BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 12214301)

  • 1. Circadian efferent input to Limulus eyes: anatomy, circuitry, and impact.
    Battelle BA
    Microsc Res Tech; 2002 Aug; 58(4):345-55. PubMed ID: 12214301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoradiographic localization of newly synthesized octopamine to retinal efferents in the Limulus visual system.
    Evans JA; Chamberlain SC; Battelle BA
    J Comp Neurol; 1983 Oct; 219(4):369-83. PubMed ID: 6417196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central regulation of photosensitive membrane turnover in the lateral eye of Limulus. I. Octopamine primes the retina for daily transient rhabdom shedding.
    Khadilkar RV; Mytinger JR; Thomason LE; Runyon SL; Washicosky KJ; Jinks RN
    Vis Neurosci; 2002; 19(3):283-97. PubMed ID: 12392178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual efference neuromodulates retinal timing: in vivo roles of octopamine, substance P, circadian phase, and efferent activation in Limulus.
    Bolbecker AR; Lim-Kessler CC; Li J; Swan A; Lewis A; Fleets J; Wasserman GS
    J Neurophysiol; 2009 Aug; 102(2):1132-8. PubMed ID: 19535477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efferent innervation of photoreceptors in spiders.
    Yamashita S
    Microsc Res Tech; 2002 Aug; 58(4):356-64. PubMed ID: 12214302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of arrestin mRNA levels in Limulus lateral eye: separate and combined influences of circadian efferent input and light.
    Battelle BA; Williams CD; Schremser-Berlin JL; Cacciatore C
    Vis Neurosci; 2000; 17(2):217-27. PubMed ID: 10824676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central projections of Limulus photoreceptor cells revealed by a photoreceptor-specific monoclonal antibody.
    Calman BG; Lauerman MA; Andrews AW; Schmidt M; Battelle BA
    J Comp Neurol; 1991 Nov; 313(4):553-62. PubMed ID: 1783680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central regulation of photosensitive membrane turnover in the lateral eye of Limulus, II: octopamine acts via adenylate cyclase/cAMP-dependent protein kinase to prime the retina for transient rhabdom shedding.
    Runyon SL; Washicosky KJ; Brenneman RJ; Kelly JR; Khadilkar RV; Heacock KF; McCormick SM; Williams KE; Jinks RN
    Vis Neurosci; 2004; 21(5):749-63. PubMed ID: 15688551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of structural rhythms in the lateral eye of Limulus: interactions of natural lighting and circadian efferent activity.
    Chamberlain SC; Barlow RB
    J Neurosci; 1987 Jul; 7(7):2135-44. PubMed ID: 3612232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The actin-binding interface of a myosin III is phosphorylated in vivo in response to signals from a circadian clock.
    Cardasis HL; Stevens SM; McClung S; Kempler KE; Powell DH; Eyler JR; Battelle BA
    Biochemistry; 2007 Dec; 46(48):13907-19. PubMed ID: 17990896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular distributions and functions of histamine, octopamine, and serotonin in the peripheral visual system, brain, and circumesophageal ring of the horseshoe crab Limulus polyphemus.
    Battelle BA; Calman BG; Hart MK
    Microsc Res Tech; 1999 Jan 15-Feb 1; 44(2-3):70-80. PubMed ID: 10084827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple mechanisms of rhabdom shedding in the lateral eye of Limulus polyphemus.
    Sacunas RB; Papuga MO; Malone MA; Pearson AC; Marjanovic M; Stroope DG; Weiner WW; Chamberlain SC; Battelle BA
    J Comp Neurol; 2002 Jul; 449(1):26-42. PubMed ID: 12115691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limulus brain modulates the structure and function of the lateral eyes.
    Barlow RB; Chamberlain SC; Levinson JZ
    Science; 1980 Nov; 210(4473):1037-9. PubMed ID: 7434015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropeptide modulation of photosensitivity. II. Physiological and anatomical effects of substance P on the lateral eye of Limulus.
    Mancillas JR; Selverston AI
    J Neurosci; 1984 Mar; 4(3):847-59. PubMed ID: 6200585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct.
    Hassan J; Iyengar B; Scantlebury N; Rodriguez Moncalvo V; Campos AR
    J Comp Neurol; 2005 Jan; 481(3):266-75. PubMed ID: 15593374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors.
    Kaplan E; Barlow RB
    Nature; 1980 Jul; 286(5771):393-5. PubMed ID: 7402321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual controls for screening pigment movement in photoreceptors of the Limulus lateral eye: circadian efferent input and light.
    Kier CK; Chamberlain SC
    Vis Neurosci; 1990 Mar; 4(3):237-55. PubMed ID: 2078504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two classes of Limulus ventral photoreceptors.
    Herman KG
    J Comp Neurol; 1991 Jan; 303(1):1-10. PubMed ID: 2005234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A myosin III from Limulus eyes is a clock-regulated phosphoprotein.
    Battelle BA; Andrews AW; Calman BG; Sellers JR; Greenberg RM; Smith WC
    J Neurosci; 1998 Jun; 18(12):4548-59. PubMed ID: 9614231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efferent Innervation to Limulus Eyes In Vivo Phosphorylates a 122 kD Protein.
    Edwards SC; Andrews AW; Renninger GH; Wiebe EM; Battelle BA
    Biol Bull; 1990 Jun; 178(3):267-278. PubMed ID: 29314945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.