These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
703 related articles for article (PubMed ID: 12214314)
1. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis. Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314 [TBL] [Abstract][Full Text] [Related]
2. Computational methods for the study of enzymic reaction mechanisms III: a perturbation plus QM/MM approach for calculating relative free energies of protonation. Cummins PL; Gready JE J Comput Chem; 2005 Apr; 26(6):561-8. PubMed ID: 15726569 [TBL] [Abstract][Full Text] [Related]
3. QM/MM and SCRF studies of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase: existence of a low-barrier hydrogen bond. Cummins PL; Gready JE J Mol Graph Model; 2000 Feb; 18(1):42-9. PubMed ID: 10935206 [TBL] [Abstract][Full Text] [Related]
4. Calculation of a Complete Enzymic Reaction Surface: Reaction and Activation Free Energies for Hydride-Ion Transfer in Dihydrofolate Reductase. Cummins PL; Rostov IV; Gready JE J Chem Theory Comput; 2007 May; 3(3):1203-11. PubMed ID: 26627439 [TBL] [Abstract][Full Text] [Related]
5. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Garcia-Viloca M; Truhlar DG; Gao J Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003 [TBL] [Abstract][Full Text] [Related]
6. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: A case study for acetylene hydratase. Liao RZ; Thiel W J Comput Chem; 2013 Oct; 34(27):2389-97. PubMed ID: 23913757 [TBL] [Abstract][Full Text] [Related]
7. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
8. Fragment quantum mechanical calculation of proteins and its applications. He X; Zhu T; Wang X; Liu J; Zhang JZ Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673 [TBL] [Abstract][Full Text] [Related]
9. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase. Cummins PL; Gready JE J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112 [TBL] [Abstract][Full Text] [Related]
10. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
11. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. Lin H; Truhlar DG J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721 [TBL] [Abstract][Full Text] [Related]
12. QM/MM Minimum Free Energy Path: Methodology and Application to Triosephosphate Isomerase. Hu H; Lu Z; Yang W J Chem Theory Comput; 2007 Mar; 3(2):390-406. PubMed ID: 19079734 [TBL] [Abstract][Full Text] [Related]
13. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619 [TBL] [Abstract][Full Text] [Related]
14. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
15. Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase. Garcia-Viloca M; Truhlar DG; Gao J J Mol Biol; 2003 Mar; 327(2):549-60. PubMed ID: 12628257 [TBL] [Abstract][Full Text] [Related]
16. Quantum mechanical/molecular mechanical study on the mechanism of the enzymatic Baeyer-Villiger reaction. Polyak I; Reetz MT; Thiel W J Am Chem Soc; 2012 Feb; 134(5):2732-41. PubMed ID: 22239272 [TBL] [Abstract][Full Text] [Related]
17. Accurate QM/MM Free Energy Calculations of Enzyme Reactions: Methylation by Catechol O-Methyltransferase. Rod TH; Ryde U J Chem Theory Comput; 2005 Nov; 1(6):1240-51. PubMed ID: 26631668 [TBL] [Abstract][Full Text] [Related]
18. Recent advances toward a general purpose linear-scaling quantum force field. Giese TJ; Huang M; Chen H; York DM Acc Chem Res; 2014 Sep; 47(9):2812-20. PubMed ID: 24937206 [TBL] [Abstract][Full Text] [Related]
19. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions. Rosta E; Klähn M; Warshel A J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904 [TBL] [Abstract][Full Text] [Related]
20. A Combined QM/MM Poisson-Boltzmann Approach. Hayik SA; Liao N; Merz KM J Chem Theory Comput; 2008 Aug; 4(8):1200-7. PubMed ID: 26631696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]