These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 12214654)
21. Solubilization and degradation of perchloroethylene (PCE) in cationic and nonionic surfactant solutions. Harendra S; Vipulanandan C J Environ Sci (China); 2011; 23(8):1240-8. PubMed ID: 22128529 [TBL] [Abstract][Full Text] [Related]
22. Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Bansiwal AK; Rayalu SS; Labhasetwar NK; Juwarkar AA; Devotta S J Agric Food Chem; 2006 Jun; 54(13):4773-9. PubMed ID: 16787027 [TBL] [Abstract][Full Text] [Related]
23. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Cho Y; Choi SI Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967 [TBL] [Abstract][Full Text] [Related]
24. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy. Wang J; Farrell J Environ Sci Technol; 2003 Sep; 37(17):3891-6. PubMed ID: 12967110 [TBL] [Abstract][Full Text] [Related]
25. Surfactant-facilitated dechlorination of 2,2',5,5'-tetrachlorinated biphenyl using zero-valent iron in soil/sediment solution: Integrated effects of plausible factors. Wu Y; Wang Y; Huang X; Simonnot MO; Wu W; Cai X; Chen S; Wang S; Qiu R; Zhang W Chemosphere; 2018 Dec; 212():845-852. PubMed ID: 30193233 [TBL] [Abstract][Full Text] [Related]
26. Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation--a laboratory feasibility study. Tsai TT; Kao CM; Hong A J Hazard Mater; 2009 Nov; 171(1-3):571-6. PubMed ID: 19586715 [TBL] [Abstract][Full Text] [Related]
27. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes. Moreno-Medina CU; Poggi-Varaldo HM; Breton-Deval L; Rinderknecht-Seijas N Environ Sci Pollut Res Int; 2017 Nov; 24(33):25534-25549. PubMed ID: 27498752 [TBL] [Abstract][Full Text] [Related]
28. Sorption of arsenic from soil-washing leachate by surfactant-modified zeolite. Sullivan EJ; Bowman RS; Legiec IA J Environ Qual; 2003; 32(6):2387-91. PubMed ID: 14674564 [TBL] [Abstract][Full Text] [Related]
29. Complete dechlorination of tetrachloroethylene by use of an anaerobic Clostridium bifermentans DPH-1 and zero-valent iron. Chang YC; Kikuchi S; Kawauchi N; Sato T; Takamizawa K Environ Technol; 2008 Apr; 29(4):381-91. PubMed ID: 18619143 [TBL] [Abstract][Full Text] [Related]
30. The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination. Kim ES; Lee DH; Yum BW; Chang HW J Hazard Mater; 2005 Mar; 119(1-3):195-203. PubMed ID: 15752866 [TBL] [Abstract][Full Text] [Related]
31. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Doong RA; Chen KT; Tsai HC Environ Sci Technol; 2003 Jun; 37(11):2575-81. PubMed ID: 12831046 [TBL] [Abstract][Full Text] [Related]
32. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. Taghavy A; Costanza J; Pennell KD; Abriola LM J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664 [TBL] [Abstract][Full Text] [Related]
33. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Doong RA; Lai YJ Water Res; 2005 Jun; 39(11):2309-18. PubMed ID: 15941576 [TBL] [Abstract][Full Text] [Related]
34. Co-surfactant of ethoxylated sorbitan ester and sorbitan monooleate for enhanced flushing of tetrachloroethylene. Yeh CK; Peng SL; Hsu IY Chemosphere; 2002 Oct; 49(4):421-30. PubMed ID: 12365839 [TBL] [Abstract][Full Text] [Related]
35. Slow desorption mechanisms of volatile organic chemical mixtures in soil and sediment micropores. Li J; Werth CJ Environ Sci Technol; 2004 Jan; 38(2):440-8. PubMed ID: 14750718 [TBL] [Abstract][Full Text] [Related]
36. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium. Sharmin R; Ioannidis MA; Legge RL J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842 [TBL] [Abstract][Full Text] [Related]
37. Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses. 1. Experimental studies. Taylor TP; Pennell KD; Abriola LM; Dane JH J Contam Hydrol; 2001 Apr; 48(3-4):325-50. PubMed ID: 11285937 [TBL] [Abstract][Full Text] [Related]
38. Reductive dechlorination of PCE and TCE by vitamin B12 and ZVMs. Kim YH; Carraway ER Environ Technol; 2002 Oct; 23(10):1135-45. PubMed ID: 12465840 [TBL] [Abstract][Full Text] [Related]
39. Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite. Lin J; Zhan Y; Zhu Z; Xing Y J Hazard Mater; 2011 Oct; 193():102-11. PubMed ID: 21813239 [TBL] [Abstract][Full Text] [Related]
40. Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions. Toledo-Jaldin HP; Blanco-Flores A; Sánchez-Mendieta V; Martín-Hernández O Environ Technol; 2018 Oct; 39(20):2679-2690. PubMed ID: 28783007 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]