BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12214669)

  • 21. A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase.
    Wei CC; Wang ZQ; Hemann C; Hille R; Stuehr DJ
    J Biol Chem; 2003 Nov; 278(47):46668-73. PubMed ID: 14504282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Why do nitric oxide synthases use tetrahydrobiopterin?
    Wei CC; Wang ZQ; Meade AL; McDonald JF; Stuehr DJ
    J Inorg Biochem; 2002 Sep; 91(4):618-24. PubMed ID: 12237227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical and peroxidase oxidation study of N'-hydroxyguanidine derivatives as NO donors.
    Cai T; Xian M; Wang PG
    Bioorg Med Chem Lett; 2002 Jun; 12(11):1507-10. PubMed ID: 12031330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytochrome P450 catalyzes the oxidation of N omega-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline.
    Boucher JL; Genet A; Vadon S; Delaforge M; Henry Y; Mansuy D
    Biochem Biophys Res Commun; 1992 Sep; 187(2):880-6. PubMed ID: 1530643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase.
    Rusche KM; Spiering MM; Marletta MA
    Biochemistry; 1998 Nov; 37(44):15503-12. PubMed ID: 9799513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isoform-selective substrates of nitric oxide synthase.
    Jia Q; Cai T; Huang M; Li H; Xian M; Poulos TL; Wang PG
    J Med Chem; 2003 Jun; 46(12):2271-4. PubMed ID: 12773030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The novel binding mode of N-alkyl-N'-hydroxyguanidine to neuronal nitric oxide synthase provides mechanistic insights into NO biosynthesis.
    Li H; Shimizu H; Flinspach M; Jamal J; Yang W; Xian M; Cai T; Wen EZ; Jia Q; Wang PG; Poulos TL
    Biochemistry; 2002 Nov; 41(47):13868-75. PubMed ID: 12437343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First non-alpha-amino acid guanidines acting as efficient NO precursors upon oxidation by NO-synthase II or activated mouse macrophages.
    Dijols S; Boucher JL; Lepoivre M; Lefevre-Groboillot D; Moreau M; Frapart Y; Rekka E; Meade AL; Stuehr DJ; Mansuy D
    Biochemistry; 2002 Jul; 41(30):9286-92. PubMed ID: 12135349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?
    Rochette L; Lorin J; Zeller M; Guilland JC; Lorgis L; Cottin Y; Vergely C
    Pharmacol Ther; 2013 Dec; 140(3):239-57. PubMed ID: 23859953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metalloporphyrin catalyzed oxidation of N-hydroxyguanidines: a biomimetic model for the H2O2-dependent activity of nitric oxide synthase.
    Keseru GM; Balogh GT; Karancsi T
    Bioorg Med Chem Lett; 2000 Aug; 10(15):1775-7. PubMed ID: 10937746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electron supply and catalytic oxidation of nitrogen by cytochrome P450 and nitric oxide synthase.
    Nishida CR; Knudsen G; Straub W; Ortiz de Montellano PR
    Drug Metab Rev; 2002 Aug; 34(3):479-501. PubMed ID: 12214661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation of N-hydroxyguanidines by copper(II): model systems for elucidating the physiological chemistry of the nitric oxide biosynthetic intermediate N-hydroxyl-L-arginine.
    Cho JY; Dutton A; Miller T; Houk KN; Fukuto JM
    Arch Biochem Biophys; 2003 Sep; 417(1):65-76. PubMed ID: 12921781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of valine 567 in substrate recognition and oxidation by neuronal nitric oxide synthase.
    Moreau M; Takahashi H; Sari MA; Boucher JL; Sagami I; Shimizu T; Mansuy D
    J Inorg Biochem; 2004 Jul; 98(7):1200-9. PubMed ID: 15219986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Sudhamsu J; Lees NS; Crane BR; Hoffman BM
    J Am Chem Soc; 2009 Oct; 131(40):14493-507. PubMed ID: 19754116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-Hydroxyguanidines oxidation by a N3S copper-complex mimicking the reactivity of Dopamine beta-Hydroxylase.
    Slama P; Boucher JL; Réglier M
    J Inorg Biochem; 2009 Mar; 103(3):455-62. PubMed ID: 19178946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of NO in the endothelium-independent relaxing effects of N(omega)-hydroxy-L-arginine and other compounds bearing a C=NOH function in the rat aorta.
    Vetrovsky P; Boucher JL; Schott C; Beranova P; Chalupsky K; Callizot N; Muller B; Entlicher G; Mansuy D; Stoclet JC
    J Pharmacol Exp Ther; 2002 Nov; 303(2):823-30. PubMed ID: 12388669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of neuronal NO synthase under single-turnover conditions: conversion of Nomega-hydroxyarginine to nitric oxide and citrulline.
    Abu-Soud HM; Presta A; Mayer B; Stuehr DJ
    Biochemistry; 1997 Sep; 36(36):10811-6. PubMed ID: 9312270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-hydroxyguanidines as substrates of nitric oxide synthases.
    Cai TB; Lu D; Wang PG
    Curr Top Med Chem; 2005; 5(7):721-36. PubMed ID: 16101431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.