BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 122148)

  • 21. Alpha2-adrenoceptors inhibit antidiuretic hormone-stimulated Na+ absorption across tight epithelia (Rana esculenta).
    Gudme CN; Larsen AL; Nielsen R
    Pflugers Arch; 2001 Jun; 442(3):346-52. PubMed ID: 11484764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Na transport stimulation by novobiocin: transepithelial parameters and evaluation of ENa.
    Rick R; Dörge A; Sesselmann E
    Pflugers Arch; 1988 Mar; 411(3):243-51. PubMed ID: 2454448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium pump stimulation by oxytocin and cyclic AMP in the isolated epithelium of the frog skin.
    Aceves J
    Pflugers Arch; 1977 Nov; 371(3):211-6. PubMed ID: 202919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin.
    Nagel W; Katz U
    Pflugers Arch; 2003 May; 446(2):198-202. PubMed ID: 12739157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of T-2 toxin on active sodium transport across frog skin in the presence of ADH and amphotericin B.
    Gallucci E; Barbarossa L; Bottalico A; Angiolillo D; Micelli S
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 93(1):33-6. PubMed ID: 2567225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupled transepithelial sodium and potassium transport across isolated frog skin: effect of ouabain, amiloride and the polyene antibiotic filipin.
    Nielsen R
    J Membr Biol; 1979 Dec; 51(2):161-84. PubMed ID: 316829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.
    Fuchs W; Larsen EH; Lindemann B
    J Physiol; 1977 May; 267(1):137-66. PubMed ID: 301566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 3 to 2 coupling of the Na-K pump responsible for the transepithelial Na transport in frog skin disclosed by the effect of Ba.
    Nielsen R
    Acta Physiol Scand; 1979 Oct; 107(2):189-91. PubMed ID: 316639
    [No Abstract]   [Full Text] [Related]  

  • 29. Correlation between the mechanism of insulin and vasopressin actions on sodium transport across isolated frog skin.
    Feder E; Skorupski W
    Acta Physiol Pol; 1979; 30(2):253-60. PubMed ID: 313658
    [No Abstract]   [Full Text] [Related]  

  • 30. Effects of antidiuretic hormone on kinetic and energetic determinants of active sodium transport in frog skin.
    Lau YT; Lang MA; Essig A
    Biochim Biophys Acta; 1981 Oct; 647(2):177-87. PubMed ID: 6271208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Na transport stimulation by novobiocin: intracellular ion concentrations and membrane potential.
    Rick R; Beck FX; Dörge A; Sesselmann E; Thurau K
    Pflugers Arch; 1988 May; 411(5):505-13. PubMed ID: 3260372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium transport across isolated frog skin epithelium.
    Reinach PS; Candia OA; Siegel GJ
    J Membr Biol; 1975 Dec; 25(1-2):75-92. PubMed ID: 1082512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin.
    Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ
    Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pumped movements of sodium and potassium ions in the isolated epithelium of the frog skin.
    Aceves J
    Pflugers Arch; 1977 Nov; 371(3):201-9. PubMed ID: 564023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium.
    Harvey BJ; Thomas SR; Ehrenfeld J
    J Gen Physiol; 1988 Dec; 92(6):767-91. PubMed ID: 3265144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amphotericin B-induced active transport of K+ and the Na+-K+ flux ratio in frog corneal epithelium.
    Candia OA; Reinach PS; Alvarez L
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C454-61. PubMed ID: 6093573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).
    Costa PM; Fernandes PL; Ferreira HG; Ferreira KT; Giraldez F
    J Physiol; 1987 Dec; 393():1-17. PubMed ID: 2451735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP).
    Ponec J; Bakos P; Lichardus B
    Gen Physiol Biophys; 1989 Jun; 8(3):245-55. PubMed ID: 2670663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Independent action of antidiuretic hormone, theophylline and cyclic 3',5'-adenosine monophosphate on cell membrane permeability in frog skin.
    Cuthbert AW; Painter E
    J Physiol; 1968 Dec; 199(3):593-612. PubMed ID: 4304235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation between transepithelial Na+ transport and transepithelial water movement across isolated frog skin (Rana esculenta).
    Nielsen R
    J Membr Biol; 1997 Sep; 159(1):61-9. PubMed ID: 9309211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.