BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 12214873)

  • 1. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia.
    van Wieringen N; Wiersma J; Zum Vörde Sive Vörding P; Oldenborg S; Gelvich EA; Mazokhin VN; van Dijk JD; Crezee J
    Int J Hyperthermia; 2009 Nov; 25(7):542-53. PubMed ID: 19848617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior.
    Correia D; Kok HP; de Greef M; Bel A; van Wieringen N; Crezee J
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2917-26. PubMed ID: 19695983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations.
    Petra Kok H; Correia D; De Greef M; Van Stam G; Bel A; Crezee J
    Int J Hyperthermia; 2010; 26(2):171-84. PubMed ID: 20146571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.
    Underwood HR; Peterson AF; Magin RL
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):146-53. PubMed ID: 1612617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia.
    Lee WM; Gelvich EA; van der Baan P; Mazokhin VN; van Rhoon GC
    Int J Hyperthermia; 2004 Sep; 20(6):607-24. PubMed ID: 15370817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method.
    Shaw JA; Durney CH; Christensen DA
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
    Kok HP; De Greef M; Correia D; Vörding PJ; Van Stam G; Gelvich EA; Bel A; Crezee J
    Int J Hyperthermia; 2009; 25(6):462-76. PubMed ID: 19657850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of two different 70 MHz applicators for large extremity lesions: simulation and application.
    Kok HP; de Greef M; van Wieringen N; Correia D; Hulshof MC; Zum Vörde Sive Vörding PJ; Sijbrands J; Bel A; Crezee J
    Int J Hyperthermia; 2010; 26(4):376-88. PubMed ID: 20230249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Radiologic hyperthermia with microwaves and radio-frequencies. I. Presentation of a multifrequency system].
    Sannazzari GL; Gabriele P; Orecchia R; Fillini C; Melano A; Ragona R; Audone B; Bolla L
    Radiol Med; 1986; 72(7-8):564-72. PubMed ID: 3737991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An RF concentrating method using inductive aperture-type applicators.
    Fujita Y; Kato H; Ishida T
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):110-3. PubMed ID: 8468071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.
    Nadobny J; Fähling H; Hagmann MJ; Turner PF; Wlodarczyk W; Gellermann JM; Deuflhard P; Wust P
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1348-59. PubMed ID: 12450365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAR characteristics of three types of Contact Flexible Microstrip Applicators for superficial hyperthermia.
    Lamaitre G; Van Dijk JD; Gelvich EA; Wiersma J; Schneider CJ
    Int J Hyperthermia; 1996; 12(2):255-69. PubMed ID: 8926393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia.
    Lee ER; Wilsey TR; Tarczy-Hornoch P; Kapp DS; Fessenden P; Lohrbach A; Prionas SD
    IEEE Trans Biomed Eng; 1992 May; 39(5):470-83. PubMed ID: 1526638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects for radiofrequency hyperthermia applicator research. I--Pre-optimised prototypes of endocavitary applicators with matching interfaces for prostate hyperplasia and cancer treatments.
    Franconi C; Vrba J; Micali F; Pesce F
    Int J Hyperthermia; 2011; 27(2):187-98. PubMed ID: 21250898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the impedance method to calculate 3-D power deposition patterns for hyperthermia with capacitive plate electrodes.
    Orcutt N; Gandhi OP
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):36-43. PubMed ID: 2303268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.