These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 12214876)

  • 1. Narrowband auscultatory blood pressure measurement.
    Sebald DJ; Bahr DE; Kahn AR
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1038-44. PubMed ID: 12214876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the shapes of the oscillometric pulse amplitude envelopes and their characteristic ratios on the differences between auscultatory and oscillometric blood pressure measurements.
    Amoore JN; Vacher E; Murray IC; Mieke S; King ST; Smith FE; Murray A
    Blood Press Monit; 2007 Oct; 12(5):297-305. PubMed ID: 17890968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal quality measures for unsupervised blood pressure measurement.
    Sukor JA; Redmond SJ; Chan GS; Lovell NH
    Physiol Meas; 2012 Mar; 33(3):465-86. PubMed ID: 22370141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity detection of Korotkoff sounds.
    Sibley AE; Winsor T; Grigsby DA; Pischel E
    Med Instrum; 1983; 17(2):159-62. PubMed ID: 6855651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting oscillometric pulses from the cuff pressure: does it affect the pressures determined by oscillometric blood pressure monitors?
    Amoore JN
    Blood Press Monit; 2006 Oct; 11(5):269-79. PubMed ID: 16932036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic blood pressure measurement: the oscillometric waveform shape is a potential contributor to differences between oscillometric and auscultatory pressure measurements.
    Amoore JN; Lemesre Y; Murray IC; Mieke S; King ST; Smith FE; Murray A
    J Hypertens; 2008 Jan; 26(1):35-43. PubMed ID: 18090538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study for the development of K-sound based automatic blood pressure device using PVDF film.
    Xiong Li ; Panicker GV; Im JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():255-258. PubMed ID: 28268325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital recording system of sphygmomanometry.
    Lee J; Park D; Oh H; Kim I; Shen D; Chee Y
    Blood Press Monit; 2009 Apr; 14(2):77-81. PubMed ID: 19305187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low frequency arterial wall movements for indirect blood pressure measurement in man. Validation of a method for non-invasive assessment of blood pressure under the influence of isoprenaline and angiotensin.
    Dietz U; Belz GG
    Arzneimittelforschung; 1991 May; 41(5):557-62. PubMed ID: 1898428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital envelope detector for blood pressure measurement using an oscillometric method.
    Lee JY; Kim JK; Yoon G
    J Med Eng Technol; 2002; 26(3):117-22. PubMed ID: 12350278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the cuff transfer function increases indirect blood pressure measurement accuracy.
    Mersich A; Jobbágy A
    Physiol Meas; 2009 Mar; 30(3):323-33. PubMed ID: 19234359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements.
    Babbs CF
    J Am Soc Hypertens; 2015 Dec; 9(12):935-50.e3. PubMed ID: 26553392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auscultatory and oscillometric methods of ambulatory blood pressure monitoring, advantages and limits: a technical point of view.
    Bonnafoux P
    Blood Press Monit; 1996 Jun; 1(3):181-185. PubMed ID: 10226223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation of the Korotkoff Stethoscope Sounds During Blood Pressure Measurement: Analysis Using a Convolutional Neural Network.
    Pan F; He P; Liu C; Li T; Murray A; Zheng D
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1593-1598. PubMed ID: 29136608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auscultatory mean blood pressure.
    Davis GJ; Geddes LA
    J Clin Monit; 1990 Oct; 6(4):261-5. PubMed ID: 2230854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time domain wave separation using multiple microphones.
    Kemp JA; van Walstijn M; Campbell DM; Chick JP; Smith RA
    J Acoust Soc Am; 2010 Jul; 128(1):195-205. PubMed ID: 20649215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood pressure measurement in noise intensive environments using adaptive interference cancellation.
    Pinto L; Dhanantwari A; Wong W; Stergiopoulos S; Maris M
    Ann Biomed Eng; 2002 May; 30(5):657-70. PubMed ID: 12108840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locating arbitrarily time-dependent sound sources in three dimensional space in real time.
    Wu SF; Zhu N
    J Acoust Soc Am; 2010 Aug; 128(2):728-39. PubMed ID: 20707443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auscultatory blood pressure measurement--effect of pressure on the head of the stethoscope.
    Londe S; Klitzner TS
    West J Med; 1984 Aug; 141(2):193-5. PubMed ID: 6495724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.