These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 12214879)

  • 1. A new method for incorporating weighted temporal and spatial smoothing in the inverse problem of electrocardiography.
    Throne RD; Olson LG; Windle JR
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1054-9. PubMed ID: 12214879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The maximum A posteriori approach to the inverse problem of electrocardiography.
    Bu G; Throne R; Olson L; Windle J
    Biomed Sci Instrum; 2003; 39():158-62. PubMed ID: 12724886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [EM algorithm for the inverse problem of electrocardiography].
    Gao F; Liu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):795-800. PubMed ID: 18788282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of two methods for choosing the regularization parameter for the inverse problem of electrocardiography.
    Lowther DA; Throne RD; Olson LG; Windle JR
    Biomed Sci Instrum; 2002; 38():257-61. PubMed ID: 12085612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter.
    Berrier KL; Sorensen DC; Khoury DS
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):507-15. PubMed ID: 15000381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for regularization parameter determination in the inverse problem of electrocardiography.
    Johnston PR; Gulrajani RM
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):19-39. PubMed ID: 9214781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study.
    Wei Q; Liu F; Appleton B; Xia L; Liu N; Wilson S; Riley R; Strugnel W; Slaughter R; Denman R; Crozier S
    Phys Med Biol; 2006 Jul; 51(14):3405-18. PubMed ID: 16825739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Venous catheter based mapping of ectopic epicardial activation: training data set selection for statistical estimation.
    Yilmaz B; MacLeod RS; Punske BB; Taccardi B; Brooks DH
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1823-31. PubMed ID: 16285385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model.
    Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ
    Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical accuracy of a moving equivalent dipole method to identify sites of origin of cardiac electrical activation.
    Armoundas AA; Feldman AB; Mukkamala R; He B; Mullen TJ; Belk PA; Lee YZ; Cohen RJ
    IEEE Trans Biomed Eng; 2003 Dec; 50(12):1360-70. PubMed ID: 14656065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias.
    Castells F; Rieta JJ; Millet J; Zarzoso V; Associate
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):258-67. PubMed ID: 15709663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial regularization of the electrocardiographic inverse problem and its application to endocardial mapping.
    Velipasaoglu EO; Sun H; Zhang F; Berrier KL; Khoury DS
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):327-37. PubMed ID: 10743774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved performance of bayesian solutions for inverse electrocardiography using multiple information sources.
    Serinagaoglu Y; Brooks DH; MacLeod RS
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2024-34. PubMed ID: 17019867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Tang M
    Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spline Laplacian ECG estimator in a realistic geometry volume conductor.
    He B; Li G; Lian J
    IEEE Trans Biomed Eng; 2002 Feb; 49(2):110-7. PubMed ID: 12066878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavefront-based models for inverse electrocardiography.
    Ghodrati A; Brooks DH; Tadmor G; MacLeod RS
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1821-31. PubMed ID: 16941838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology.
    Cheng LK; Bodley JM; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):11-22. PubMed ID: 12617520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of body surface potential and body surface Laplacian signals for electrocardiographic imaging.
    Throne RD; Olson LG
    IEEE Trans Biomed Eng; 2000 Apr; 47(4):452-62. PubMed ID: 10763291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.