These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 12215415)

  • 1. De novo prediction of three-dimensional structures for major protein families.
    Bonneau R; Strauss CE; Rohl CA; Chivian D; Bradley P; Malmström L; Robertson T; Baker D
    J Mol Biol; 2002 Sep; 322(1):65-78. PubMed ID: 12215415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PconsFam: An Interactive Database of Structure Predictions of Pfam Families.
    Lamb J; Jarmolinska AI; Michel M; Menéndez-Hurtado D; Sulkowska JI; Elofsson A
    J Mol Biol; 2019 Jun; 431(13):2442-2448. PubMed ID: 30796988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of homology in protein structure classification.
    Dietmann S; Holm L
    Nat Struct Biol; 2001 Nov; 8(11):953-7. PubMed ID: 11685241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of sequence and structure protein domain families as a basis for structural genomics.
    Elofsson A; Sonnhammer EL
    Bioinformatics; 1999 Jun; 15(6):480-500. PubMed ID: 10383473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strand-loop-strand motifs: prediction of hairpins and diverging turns in proteins.
    Kuhn M; Meiler J; Baker D
    Proteins; 2004 Feb; 54(2):282-8. PubMed ID: 14696190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving fragment quality for de novo structure prediction.
    Shrestha R; Zhang KY
    Proteins; 2014 Sep; 82(9):2240-52. PubMed ID: 24753351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA.
    Bystroff C; Shao Y
    Bioinformatics; 2002; 18 Suppl 1():S54-61. PubMed ID: 12169531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fold recognition and accurate sequence-structure alignment of sequences directing beta-sheet proteins.
    McDonnell AV; Menke M; Palmer N; King J; Cowen L; Berger B
    Proteins; 2006 Jun; 63(4):976-85. PubMed ID: 16547930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM.
    Kim DE; Chivian D; Malmström L; Baker D
    Proteins; 2005; 61 Suppl 7():193-200. PubMed ID: 16187362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and prediction of functional sub-types from protein sequence alignments.
    Hannenhalli SS; Russell RB
    J Mol Biol; 2000 Oct; 303(1):61-76. PubMed ID: 11021970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profile-profile comparisons by COMPASS predict intricate homologies between protein families.
    Sadreyev RI; Baker D; Grishin NV
    Protein Sci; 2003 Oct; 12(10):2262-72. PubMed ID: 14500884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of distant residue contacts with the use of evolutionary information.
    Vicatos S; Reddy BV; Kaznessis Y
    Proteins; 2005 Mar; 58(4):935-49. PubMed ID: 15645442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure prediction for CASP8 with all-atom refinement using Rosetta.
    Raman S; Vernon R; Thompson J; Tyka M; Sadreyev R; Pei J; Kim D; Kellogg E; DiMaio F; Lange O; Kinch L; Sheffler W; Kim BH; Das R; Grishin NV; Baker D
    Proteins; 2009; 77 Suppl 9(0 9):89-99. PubMed ID: 19701941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy.
    Domingues FS; Lackner P; Andreeva A; Sippl MJ
    J Mol Biol; 2000 Apr; 297(4):1003-13. PubMed ID: 10736233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.