BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12215421)

  • 1. DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid.
    Nandi PK; Leclerc E; Nicole JC; Takahashi M
    J Mol Biol; 2002 Sep; 322(1):153-61. PubMed ID: 12215421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmolyte trimethylamine N-oxide converts recombinant alpha-helical prion protein to its soluble beta-structured form at high temperature.
    Nandi PK; Bera A; Sizaret PY
    J Mol Biol; 2006 Sep; 362(4):810-20. PubMed ID: 16949096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prion domain initiation of amyloid formation in vitro from native Ure2p.
    Taylor KL; Cheng N; Williams RW; Steven AC; Wickner RB
    Science; 1999 Feb; 283(5406):1339-43. PubMed ID: 10037606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual property of prion protein unfolding in neutral salt solution.
    Nandi PK; Leclerc E; Marc D
    Biochemistry; 2002 Sep; 41(36):11017-24. PubMed ID: 12206674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between stability of folding intermediates and amyloid formation for the yeast prion Ure2p: a quantitative analysis of the effects of pH and buffer system.
    Zhu L; Zhang XJ; Wang LY; Zhou JM; Perrett S
    J Mol Biol; 2003 Apr; 328(1):235-54. PubMed ID: 12684011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerization of human prion peptide HuPrP 106-126 to amyloid in nucleic acid solution.
    Nandi PK
    Arch Virol; 1998; 143(7):1251-63. PubMed ID: 9722872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The peculiar nature of unfolding of the human prion protein.
    Baskakov IV; Legname G; Gryczynski Z; Prusiner SB
    Protein Sci; 2004 Mar; 13(3):586-95. PubMed ID: 14767078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.
    Yamaguchi K; Matsumoto T; Kuwata K
    Biochemistry; 2008 Dec; 47(50):13242-51. PubMed ID: 19053276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological polyamines inhibit nucleic-acid-induced polymerisation of prion protein.
    Bera A; Nandi PK
    Arch Virol; 2007; 152(4):655-68. PubMed ID: 17219019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p.
    Thual C; Bousset L; Komar AA; Walter S; Buchner J; Cullin C; Melki R
    Biochemistry; 2001 Feb; 40(6):1764-73. PubMed ID: 11327838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protective effect of crocin on the amyloid fibril formation of Aβ42 peptide in vitro.
    Ghahghaei A; Bathaie SZ; Kheirkhah H; Bahraminejad E
    Cell Mol Biol Lett; 2013 Sep; 18(3):328-39. PubMed ID: 23737042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin.
    Nilsson MR; Raleigh DP
    J Mol Biol; 1999 Dec; 294(5):1375-85. PubMed ID: 10600392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and secondary structure of stable beta-oligomers formed by amyloid peptide PrP(106-126).
    Walsh P; Yau J; Simonetti K; Sharpe S
    Biochemistry; 2009 Jun; 48(25):5779-81. PubMed ID: 19476383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185-208.
    Klajnert B; Cortijo-Arellano M; Cladera J; Majoral JP; Caminade AM; Bryszewska M
    Biochem Biophys Res Commun; 2007 Dec; 364(1):20-5. PubMed ID: 17927954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All or none fibrillogenesis of a prion peptide.
    Zou WQ; Yang DS; Fraser PE; Cashman NR; Chakrabartty A
    Eur J Biochem; 2001 Sep; 268(18):4885-91. PubMed ID: 11559357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scrapie amyloid (prion) protein has the conformational characteristics of an aggregated molten globule folding intermediate.
    Safar J; Roller PP; Gajdusek DC; Gibbs CJ
    Biochemistry; 1994 Jul; 33(27):8375-83. PubMed ID: 8031772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of specific residues of the β-solenoid fold to HET-s prion function, amyloid structure and stability.
    Daskalov A; Gantner M; Wälti MA; Schmidlin T; Chi CN; Wasmer C; Schütz A; Ceschin J; Clavé C; Cescau S; Meier B; Riek R; Saupe SJ
    PLoS Pathog; 2014 Jun; 10(6):e1004158. PubMed ID: 24945274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wild-type Shadoo proteins convert to amyloid-like forms under native conditions.
    Daude N; Ng V; Watts JC; Genovesi S; Glaves JP; Wohlgemuth S; Schmitt-Ulms G; Young H; McLaurin J; Fraser PE; Westaway D
    J Neurochem; 2010 Apr; 113(1):92-104. PubMed ID: 20067571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.