BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12215421)

  • 21. Copper(II)-induced secondary structure changes and reduced folding stability of the prion protein.
    Younan ND; Klewpatinond M; Davies P; Ruban AV; Brown DR; Viles JH
    J Mol Biol; 2011 Jul; 410(3):369-82. PubMed ID: 21619885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro conversion of mammalian prion protein into amyloid fibrils displays unusual features.
    Baskakov IV; Bocharova OV
    Biochemistry; 2005 Feb; 44(7):2339-48. PubMed ID: 15709746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wild-type Shadoo proteins convert to amyloid-like forms under native conditions.
    Daude N; Ng V; Watts JC; Genovesi S; Glaves JP; Wohlgemuth S; Schmitt-Ulms G; Young H; McLaurin J; Fraser PE; Westaway D
    J Neurochem; 2010 Apr; 113(1):92-104. PubMed ID: 20067571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant.
    Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW
    J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro.
    McParland VJ; Kad NM; Kalverda AP; Brown A; Kirwin-Jones P; Hunter MG; Sunde M; Radford SE
    Biochemistry; 2000 Aug; 39(30):8735-46. PubMed ID: 10913285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH.
    Yang F; Zhang M; Zhou BR; Chen J; Liang Y
    J Mol Biol; 2006 Sep; 362(4):821-34. PubMed ID: 16935298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta 2-microglobulin.
    Heegaard NH; Jørgensen TJ; Rozlosnik N; Corlin DB; Pedersen JS; Tempesta AG; Roepstorff P; Bauer R; Nissen MH
    Biochemistry; 2005 Mar; 44(11):4397-407. PubMed ID: 15766269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of disulfide bridge in the folding and stability of the recombinant human prion protein.
    Maiti NR; Surewicz WK
    J Biol Chem; 2001 Jan; 276(4):2427-31. PubMed ID: 11069909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An engineered PrPsc-like molecule from the chimera of mammalian prion protein and yeast Ure2p prion-inducing domain.
    Yin SM; Sy MS; Po T
    Acta Biochim Biophys Sin (Shanghai); 2004 Feb; 36(2):128-32. PubMed ID: 14970909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure.
    Rouget R; Sharma G; LeBlanc AC
    J Biol Chem; 2015 Feb; 290(9):5759-71. PubMed ID: 25572400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational dynamics of a hydrophobic prion fragment (113-127) in different pH and osmolyte solutions.
    Inayathullah M; Rajadas J
    Neuropeptides; 2016 Jun; 57():9-14. PubMed ID: 26919915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity.
    Satheeshkumar KS; Murali J; Jayakumar R
    J Struct Biol; 2004 Nov; 148(2):176-93. PubMed ID: 15477098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin.
    MacPhee CE; Dobson CM
    J Mol Biol; 2000 Apr; 297(5):1203-15. PubMed ID: 10764584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stem-forming regions that are essential for the amyloidogenesis of prion proteins.
    Saiki M; Hidaka Y; Nara M; Morii H
    Biochemistry; 2012 Feb; 51(8):1566-76. PubMed ID: 22324778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations.
    Wu C; Wang Z; Lei H; Zhang W; Duan Y
    J Am Chem Soc; 2007 Feb; 129(5):1225-32. PubMed ID: 17263405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast cell adhesion molecules have functional amyloid-forming sequences.
    Ramsook CB; Tan C; Garcia MC; Fung R; Soybelman G; Henry R; Litewka A; O'Meally S; Otoo HN; Khalaf RA; Dranginis AM; Gaur NK; Klotz SA; Rauceo JM; Jue CK; Lipke PN
    Eukaryot Cell; 2010 Mar; 9(3):393-404. PubMed ID: 20038605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A peptide from the adenovirus fiber shaft forms amyloid-type fibrils.
    Luckey M; Hernandez J; Arlaud G; Forsyth VT; Ruigrok RW; Mitraki A
    FEBS Lett; 2000 Feb; 468(1):23-7. PubMed ID: 10683434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin.
    Pallarès I; Vendrell J; Avilés FX; Ventura S
    J Mol Biol; 2004 Sep; 342(1):321-31. PubMed ID: 15313627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation.
    Torrent J; Alvarez-Martinez MT; Harricane MC; Heitz F; Liautard JP; Balny C; Lange R
    Biochemistry; 2004 Jun; 43(22):7162-70. PubMed ID: 15170353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.