BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12215509)

  • 1. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus.
    Xue C; Park G; Choi W; Zheng L; Dean RA; Xu JR
    Plant Cell; 2002 Sep; 14(9):2107-19. PubMed ID: 12215509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea.
    Zhao X; Kim Y; Park G; Xu JR
    Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea.
    Balhadère PV; Talbot NJ
    Plant Cell; 2001 Sep; 13(9):1987-2004. PubMed ID: 11549759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus.
    Tucker SL; Besi MI; Galhano R; Franceschetti M; Goetz S; Lenhert S; Osbourn A; Sesma A
    Plant Cell; 2010 Mar; 22(3):953-72. PubMed ID: 20348434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea.
    Ahn N; Kim S; Choi W; Im KH; Lee YH
    Mol Cells; 2004 Feb; 17(1):166-73. PubMed ID: 15055545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration.
    Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH
    Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis.
    Liu XH; Lu JP; Zhang L; Dong B; Min H; Lin FC
    Eukaryot Cell; 2007 Jun; 6(6):997-1005. PubMed ID: 17416896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea.
    Foster AJ; Jenkinson JM; Talbot NJ
    EMBO J; 2003 Jan; 22(2):225-35. PubMed ID: 12514128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond the type genome: discovery of novel avirulence genes in the rice blast fungus by genomic resequencing and genetic association studies.
    Mach J
    Plant Cell; 2009 May; 21(5):1325. PubMed ID: 19454731
    [No Abstract]   [Full Text] [Related]  

  • 10. Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus.
    Lin HC; de Ulzurrun GV; Chen SA; Yang CT; Tay RJ; Iizuka T; Huang TY; Kuo CY; Gonçalves AP; Lin SY; Chang YC; Stajich JE; Schwarz EM; Hsueh YP
    PLoS Biol; 2023 Nov; 21(11):e3002400. PubMed ID: 37988381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chromosome-scale genome assembly of the grape powdery mildew pathogen
    Zaccaron AZ; Neill T; Corcoran J; Mahaffee WF; Stergiopoulos I
    mBio; 2023 Aug; 14(4):e0064523. PubMed ID: 37341476
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification and Characterization of Novel Candidate Effector Proteins from
    Liu D; Lun Z; Liu N; Yuan G; Wang X; Li S; Peng YL; Lu X
    J Fungi (Basel); 2023 May; 9(5):. PubMed ID: 37233285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Devastating Rice Blast Airborne Pathogen
    Tan J; Zhao H; Li J; Gong Y; Li X
    Pathogens; 2023 Feb; 12(3):. PubMed ID: 36986301
    [No Abstract]   [Full Text] [Related]  

  • 14. In Silico Characterization of the Secretome of the Fungal Pathogen
    Chellappan BV; El-Ganainy SM; Alrajeh HS; Al-Sheikh H
    J Fungi (Basel); 2023 Feb; 9(3):. PubMed ID: 36983471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of cross-kingdom RNA interference in
    Qin S; Veloso J; Puccetti G; van Kan JAL
    Front Plant Sci; 2023; 14():1107888. PubMed ID: 36968352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verticillium dahliae Vta3 promotes ELV1 virulence factor gene expression in xylem sap, but tames Mtf1-mediated late stages of fungus-plant interactions and microsclerotia formation.
    Maurus I; Harting R; Herrfurth C; Starke J; Nagel A; Mohnike L; Chen YY; Schmitt K; Bastakis E; Süß MT; Leonard M; Heimel K; Valerius O; Feussner I; Kronstad JW; Braus GH
    PLoS Pathog; 2023 Jan; 19(1):e1011100. PubMed ID: 36716333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico comparative genomic analysis unravels a new candidate protein arsenal specifically associated with Fusarium oxysporum f. sp. albedinis pathogenesis.
    Ayada H; Dhioui B; Mazouz H; El Harrak A; Jaiti F; Ouhmidou B; Diouri M; Moumni M
    Sci Rep; 2022 Nov; 12(1):19098. PubMed ID: 36351932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi.
    Rocafort M; Bowen JK; Hassing B; Cox MP; McGreal B; de la Rosa S; Plummer KM; Bradshaw RE; Mesarich CH
    BMC Biol; 2022 Nov; 20(1):246. PubMed ID: 36329441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two Magnaporthe appressoria-specific (MAS) proteins, MoMas3 and MoMas5, are required for suppressing host innate immunity and promoting biotrophic growth in rice cells.
    Gong Z; Ning N; Li Z; Xie X; Wilson RA; Liu W
    Mol Plant Pathol; 2022 Sep; 23(9):1290-1302. PubMed ID: 35526236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Transcriptional Programs Underlie Differences in Virulence of Isolates on Host Plants in a Fungal Pathogen,
    Cheon W; Kim YS; Balaraju K; Lee Y; Kwon HT; Jeon J; Jeon Y
    Front Microbiol; 2021; 12():743776. PubMed ID: 34858364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.