BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12215606)

  • 21. The contribution of TWIK-related acid-sensitive K+-containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons.
    Meuth SG; Aller MI; Munsch T; Schuhmacher T; Seidenbecher T; Meuth P; Kleinschnitz C; Pape HC; Wiendl H; Wisden W; Budde T
    Mol Pharmacol; 2006 Apr; 69(4):1468-76. PubMed ID: 16424077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxic responses of arterial chemoreceptors in rabbits are primarily mediated by leak K channels.
    Kobayashi N; Yamamoto Y
    Adv Exp Med Biol; 2010; 669():195-9. PubMed ID: 20217348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells.
    Kang D; Han J; Talley EM; Bayliss DA; Kim D
    J Physiol; 2004 Jan; 554(Pt 1):64-77. PubMed ID: 14678492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. K+-dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels.
    Lauritzen I; Zanzouri M; Honoré E; Duprat F; Ehrengruber MU; Lazdunski M; Patel AJ
    J Biol Chem; 2003 Aug; 278(34):32068-76. PubMed ID: 12783883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells.
    Kim D; Cavanaugh EJ; Kim I; Carroll JL
    J Physiol; 2009 Jun; 587(Pt 12):2963-75. PubMed ID: 19403596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TASK-like K+ channels mediate effects of 5-HT and extracellular pH in rat dorsal vagal neurones in vitro.
    Hopwood SE; Trapp S
    J Physiol; 2005 Oct; 568(Pt 1):145-54. PubMed ID: 16020457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II.
    Li Z; Ferguson AV
    Neuroscience; 1996 Mar; 71(1):133-45. PubMed ID: 8834397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biophysical characterization of whole-cell currents in O2-sensitive neurons from the rat glossopharyngeal nerve.
    Campanucci VA; Nurse CA
    Neuroscience; 2005; 132(2):437-51. PubMed ID: 15802195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docosahexaenoic acid block of neuronal voltage-gated K+ channels: subunit selective antagonism by zinc.
    Poling JS; Vicini S; Rogawski MA; Salem N
    Neuropharmacology; 1996; 35(7):969-82. PubMed ID: 8938727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of apamin-sensitive medium afterhyperpolarization current by anandamide and its role in excitability control in cultured hippocampal neurons.
    Wang W; Zhang K; Yan S; Li A; Hu X; Zhang L; Liu C
    Neuropharmacology; 2011 May; 60(6):901-9. PubMed ID: 21272594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ionic mechanisms underlying depolarizing responses of an identified insect motor neuron to short periods of hypoxia.
    Le Corronc H; Hue B; Pitman RM
    J Neurophysiol; 1999 Jan; 81(1):307-18. PubMed ID: 9914291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons.
    Calabresi P; Marfia GA; Centonze D; Pisani A; Bernardi G
    Stroke; 1999 Jan; 30(1):171-9. PubMed ID: 9880406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of Ca2+-activated K+ channels to central chemosensitivity in cultivated neurons of fetal rat medulla.
    Wellner-Kienitz MC; Shams H; Scheid P
    J Neurophysiol; 1998 Jun; 79(6):2885-94. PubMed ID: 9636094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries.
    Gardener MJ; Johnson IT; Burnham MP; Edwards G; Heagerty AM; Weston AH
    Br J Pharmacol; 2004 May; 142(1):192-202. PubMed ID: 15066906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
    Tan ZY; Lu Y; Whiteis CA; Benson CJ; Chapleau MW; Abboud FM
    Circ Res; 2007 Nov; 101(10):1009-19. PubMed ID: 17872465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in oxygen sensitivity of TASK in carotid body glomus cells during early postnatal development.
    Kim D; Papreck JR; Kim I; Donnelly DF; Carroll JL
    Respir Physiol Neurobiol; 2011 Aug; 177(3):228-35. PubMed ID: 21530688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel TASK channels inhibitors derived from dihydropyrrolo[2,1-a]isoquinoline.
    Noriega-Navarro R; Lopez-Charcas O; Hernández-Enríquez B; Reyes-Gutiérrez PE; Martínez R; Landa A; Morán J; Gomora JC; Garcia-Valdes J
    Neuropharmacology; 2014 Apr; 79():28-36. PubMed ID: 24212057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole cell patch-clamp recordings of rat midbrain dopaminergic neurons isolate a sulphonylurea- and ATP-sensitive component of potassium currents activated by hypoxia.
    Guatteo E; Federici M; Siniscalchi A; Knöpfel T; Mercuri NB; Bernardi G
    J Neurophysiol; 1998 Mar; 79(3):1239-45. PubMed ID: 9497405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of TASK-1 in human pulmonary artery smooth muscle cells.
    Olschewski A; Li Y; Tang B; Hanze J; Eul B; Bohle RM; Wilhelm J; Morty RE; Brau ME; Weir EK; Kwapiszewska G; Klepetko W; Seeger W; Olschewski H
    Circ Res; 2006 Apr; 98(8):1072-80. PubMed ID: 16574908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacology of neuronal background potassium channels.
    Lesage F
    Neuropharmacology; 2003 Jan; 44(1):1-7. PubMed ID: 12559116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.