These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 12216116)

  • 21. Cholesterol-binding cytolytic protein toxins.
    Alouf JE
    Int J Med Microbiol; 2000 Oct; 290(4-5):351-6. PubMed ID: 11111910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholesterol and lipid/protein ratio control the oligomerization of a sphingomyelin-specific toxin, lysenin.
    Ishitsuka R; Kobayashi T
    Biochemistry; 2007 Feb; 46(6):1495-502. PubMed ID: 17243772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS.
    Chattopadhyay A; Paila YD; Jafurulla M; Chaudhuri A; Singh P; Murty MR; Vairamani M
    Biochem Biophys Res Commun; 2007 Nov; 363(3):800-5. PubMed ID: 17904101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.
    Heuck AP; Moe PC; Johnson BB
    Subcell Biochem; 2010; 51():551-77. PubMed ID: 20213558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of divalent cations and saccharides on Vibrio metschnikovii cytolysin-induced hemolysis of rabbit erythrocytes.
    Miyake M; Honda T; Miwatani T
    Infect Immun; 1989 Jan; 57(1):158-63. PubMed ID: 2909485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oligomerization of Vibrio cholerae cytolysin yields a pentameric pore and has a dual specificity for cholesterol and sphingolipids in the target membrane.
    Zitzer A; Zitzer O; Bhakdi S; Palmer M
    J Biol Chem; 1999 Jan; 274(3):1375-80. PubMed ID: 9880509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential interaction of the two cholesterol-dependent, membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin, with enantiomeric cholesterol.
    Zitzer A; Westover EJ; Covey DF; Palmer M
    FEBS Lett; 2003 Oct; 553(3):229-31. PubMed ID: 14572629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The extracellular cytolysin of Vibrio vulnificus: inactivation and relationship to virulence in mice.
    Wright AC; Morris JG
    Infect Immun; 1991 Jan; 59(1):192-7. PubMed ID: 1846124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time monitoring of the membrane-binding and insertion properties of the cholesterol-dependent cytolysin anthrolysin O from Bacillus anthracis.
    Cocklin S; Jost M; Robertson NM; Weeks SD; Weber HW; Young E; Seal S; Zhang C; Mosser E; Loll PJ; Saunders AJ; Rest RF; Chaiken IM
    J Mol Recognit; 2006; 19(4):354-62. PubMed ID: 16775845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrio vulnificus cytolysin induces apoptosis in HUVEC, SGC-7901 and SMMC-7721 cells via caspase-9/3-dependent pathway.
    Zhao JF; Sun AH; Ruan P; Zhao XH; Lu MQ; Yan J
    Microb Pathog; 2009 Apr; 46(4):194-200. PubMed ID: 19167479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiating between isolates of Vibrio vulnificus with monoclonal antibodies.
    Rengpipat S; Pusiririt S; Rukpratanporn S
    J Microbiol Methods; 2008 Dec; 75(3):398-404. PubMed ID: 18706941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of Vibrio vulnificus hemolysin through mutation of the N- or C-terminus of the lectin-like domain.
    Miyoshi S; Abe Y; Senoh M; Mizuno T; Maehara Y; Nakao H
    Toxicon; 2011 May; 57(6):904-8. PubMed ID: 21426913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single point mutation in Vibrio cholerae cytolysin compromises the membrane pore-formation mechanism of the toxin.
    Paul K; Chattopadhyay K
    FEBS J; 2012 Nov; 279(21):4039-51. PubMed ID: 22934938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstitution of cholesterol-dependent vaginolysin into tethered phospholipid bilayers: implications for bioanalysis.
    Budvytyte R; Pleckaityte M; Zvirbliene A; Vanderah DJ; Valincius G
    PLoS One; 2013; 8(12):e82536. PubMed ID: 24349307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesterol and the activity of bacterial toxins.
    Palmer M
    FEMS Microbiol Lett; 2004 Sep; 238(2):281-9. PubMed ID: 15358412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The diversity of receptor recognition in cholesterol-dependent cytolysins.
    Tabata A; Ohkura K; Ohkubo Y; Tomoyasu T; Ohkuni H; Whiley RA; Nagamune H
    Microbiol Immunol; 2014 Mar; 58(3):155-71. PubMed ID: 24401114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and molecular mechanism of a functional form of pneumolysin: a cholesterol-dependent cytolysin from Streptococcus pneumoniae.
    Kelly SJ; Jedrzejas MJ
    J Struct Biol; 2000 Oct; 132(1):72-81. PubMed ID: 11121308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A bacterial RTX toxin causes programmed necrotic cell death through calcium-mediated mitochondrial dysfunction.
    Kim YR; Lee SE; Kang IC; Nam KI; Choy HE; Rhee JH
    J Infect Dis; 2013 May; 207(9):1406-15. PubMed ID: 23225896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and characterization of Vibrio metschnikovii cytolysin.
    Miyake M; Honda T; Miwatani T
    Infect Immun; 1988 Apr; 56(4):954-60. PubMed ID: 3126150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A conserved GTPase YchF of Vibrio vulnificus is involved in macrophage cytotoxicity, iron acquisition, and mouse virulence.
    Chen YC; Chung YT
    Int J Med Microbiol; 2011 Aug; 301(6):469-74. PubMed ID: 21570909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.