These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12216416)

  • 1. The cleavage plane will bend when one aster of the mitotic apparatus stops growing in compressed sea urchin eggs.
    Yoshigaki T
    Bull Math Biol; 2002 Jul; 64(4):643-72. PubMed ID: 12216416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of density gradients of astral microtubules at cell surface in cytokinesis of sea urchin eggs.
    Yoshigaki T
    J Theor Biol; 1999 Jan; 196(2):211-24. PubMed ID: 10049616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage in conical sand dollar eggs.
    Rappaport R; Rappaport BN
    Dev Biol; 1994 Jul; 164(1):258-66. PubMed ID: 8026628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the mechanism of determining the position of the cleavage furrow in cytokinesis of sea urchin eggs.
    Yoshigaki T
    Math Biosci; 2001 Mar; 170(1):17-58. PubMed ID: 11259802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure of meiosis and polar body formation in the egg of the mud snail, Ilyanassa obsoleta.
    Burgess DR
    Prog Clin Biol Res; 1977; 17():569-79. PubMed ID: 563077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why does a cleavage plane develop parallel to the spindle axis in conical sand dollar eggs? A key question for clarifying the mechanism of contractile ring positioning.
    Yoshigaki T
    J Theor Biol; 2003 Mar; 221(2):229-44. PubMed ID: 12628230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of WGA receptors in the cleavage furrow during cytokinesis of sea urchin eggs.
    Yoshigaki T
    Exp Cell Res; 1997 Nov; 236(2):463-71. PubMed ID: 9367631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus.
    Hollenbeck PJ; Cande WZ
    Eur J Cell Biol; 1985 May; 37():140-8. PubMed ID: 3896803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Displacement of cleavage plane in the sea urchin egg by locally applied taxol.
    Hamaguchi Y
    Cell Motil Cytoskeleton; 1998; 40(3):211-9. PubMed ID: 9678665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs.
    Rappaport R
    J Exp Zool; 1985 Apr; 234(1):167-71. PubMed ID: 3989496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propranolol, a beta-adrenergic receptor blocker, affects microfilament organization, but not microtubules, during the first division in sea urchin eggs.
    Nicotra A; Schatten G
    Cell Motil Cytoskeleton; 1990; 16(3):182-9. PubMed ID: 1973080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of intracellular pH on the mitotic apparatus and mitotic stage in the sand dollar egg.
    Watanabe K; Hamaguchi MS; Hamaguchi Y
    Cell Motil Cytoskeleton; 1997; 37(3):263-70. PubMed ID: 9227856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microinjected carboxylated beads move predominantly poleward in sea urchin eggs.
    Wadsworth P
    Cell Motil Cytoskeleton; 1987; 8(4):293-301. PubMed ID: 2891449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of active force generators controls mitotic spindle position.
    Grill SW; Howard J; Schäffer E; Stelzer EH; Hyman AA
    Science; 2003 Jul; 301(5632):518-21. PubMed ID: 12881570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipolar mitosis in procaine-treated polyspermic sea urchin eggs and in eggs fertilized with UV-irradiated spermatozoa with a computer model to simulate the positioning of centrosomes.
    Czihak G; Kojima M; Linhart J; Vogel H
    Eur J Cell Biol; 1991 Aug; 55(2):255-61. PubMed ID: 1935990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 51-kd protein, a component of microtubule-organizing granules in the mitotic apparatus involved in aster formation in vitro.
    Toriyama M; Ohta K; Endo S; Sakai H
    Cell Motil Cytoskeleton; 1988; 9(2):117-28. PubMed ID: 3359491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanics of the first cleavage division of the sea urchin egg.
    He X; Dembo M
    Exp Cell Res; 1997 Jun; 233(2):252-73. PubMed ID: 9194488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caffeine-induced calcium release in sea urchin eggs and the effect of continuous versus pulsed application on the mitotic apparatus.
    Harris PJ
    Dev Biol; 1994 Feb; 161(2):370-8. PubMed ID: 8313989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of the mitotic cycle of unfertilized sea urchin eggs activated by ammoniacal sea water.
    Paweletz N; Mazia D
    Eur J Cell Biol; 1979 Oct; 20(1):37-44. PubMed ID: 574819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.