BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12216689)

  • 1. The effect of reactor configuration and operational mode on Microthrix parvicella bulking and foaming in nutrient removal activated sludge systems.
    Noutsopoulos C; Mamais D; Andreadakis AD
    Water Sci Technol; 2002; 46(1-2):61-4. PubMed ID: 12216689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulking sludge solved?!
    Kruit J; Hulsbeek J; Visser A
    Water Sci Technol; 2002; 46(1-2):457-64. PubMed ID: 12216668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial evaluation of activated sludge and filamentous population at eight Czech nutrient removal activated sludge plants during year 2000.
    Krhutková O; Ruzicková I; Wanner J
    Water Sci Technol; 2002; 46(1-2):471-8. PubMed ID: 12216670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella.
    Roels T; Dauwe F; Van Damme S; De Wilde K; Roelandt F
    Water Sci Technol; 2002; 46(1-2):487-90. PubMed ID: 12216672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Microthrix parvicella", a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge.
    Rossetti S; Tomei MC; Nielsen PH; Tandoi V
    FEMS Microbiol Rev; 2005 Jan; 29(1):49-64. PubMed ID: 15652975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of residual ammonia concentration under aerobic conditions on the growth of Microthrix parvicella in biological nutrient removal plants.
    Tsai MW; Wentzel MC; Ekama GA
    Water Res; 2003 Jul; 37(12):3009-15. PubMed ID: 12767304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two stage activated sludge plants--influence of different operational modes on sludge bulking and nitrification.
    Wandl G; Müller-Rechberger H; Matsché N; Svardal K; Winkler S
    Water Sci Technol; 2002; 46(1-2):479-86. PubMed ID: 12216671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Microthrix parvicella": a new approach for kinetic and physiological characterization.
    Rossetti S; Tomei MC; Levantesi C; Ramadori R; Tandol V
    Water Sci Technol; 2002; 46(1-2):65-72. PubMed ID: 12216690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants.
    Nielsen PH; Roslev P; Dueholm TE; Nielsen JL
    Water Sci Technol; 2002; 46(1-2):73-80. PubMed ID: 12216691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microthrix parvicella foaming at the Fusina WWTP.
    Miana P; Grando L; Caravello G; Fabris M
    Water Sci Technol; 2002; 46(1-2):499-502. PubMed ID: 12216676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BICT biological process for nitrogen and phosphorus removal.
    Huang Y; Li Y; Pan Y
    Water Sci Technol; 2004; 50(6):179-88. PubMed ID: 15537006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Management of process performance at low water temperatures in respect of filamentous organisms.
    Wang ZZ; Niu ZQ; Pelkonen M
    J Environ Sci (China); 2004; 16(1):113-6. PubMed ID: 14971464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Microthrix parvicella in activated sludge bacterial communities by real-time PCR.
    Kaetzke A; Jentzsch D; Eschrich K
    Lett Appl Microbiol; 2005; 40(3):207-11. PubMed ID: 15715646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the growth of Microthrix parvicelle by using an aerobic selector--results of pilot and full scale plant operation.
    Lebek M; Rosenwinkel KH
    Water Sci Technol; 2002; 46(1-2):491-4. PubMed ID: 12216674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of Microthrix parvicella in sequencing batch reactors.
    Mallouhi L; Austermann-Haun U
    Water Sci Technol; 2014; 69(10):1984-95. PubMed ID: 24845312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism.
    Lee J; Kim J; Lee C; Yun Z; Choi E
    Water Sci Technol; 2005; 52(10-11):569-78. PubMed ID: 16459835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors.
    Datta T; Liu Y; Goel R
    Chemosphere; 2009 Jul; 76(5):697-705. PubMed ID: 19409599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The discharged excess sludge treated by Oligochaeta.
    Wei Y; Liu J
    Water Sci Technol; 2005; 52(10-11):265-72. PubMed ID: 16459800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential role of 'Candidatus Microthrix parvicella' in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants.
    Wang J; Qi R; Liu M; Li Q; Bao H; Li Y; Wang S; Tandoi V; Yang M
    Water Sci Technol; 2014; 70(2):367-75. PubMed ID: 25051486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.