BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12216692)

  • 41. Locating and Activating Molecular 'Time Bombs': Induction of Mycolata Prophages.
    Dyson ZA; Brown TL; Farrar B; Doyle SR; Tucci J; Seviour RJ; Petrovski S
    PLoS One; 2016; 11(8):e0159957. PubMed ID: 27487243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of clinical isolates of pathogenic Nocardia strains and related actinomycetes in Thailand from 1996 to 2003.
    Poonwan N; Mekha N; Yazawa K; Thunyaharn S; Yamanaka A; Mikami Y
    Mycopathologia; 2005 Apr; 159(3):361-8. PubMed ID: 15883719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prevention of Gordonia and Nocardia stabilized foam formation by using bacteriophage GTE7.
    Petrovski S; Seviour RJ; Tillett D
    Appl Environ Microbiol; 2011 Nov; 77(21):7864-7. PubMed ID: 21926218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enantioselective hydrolysis of butyl 2-ethylhexanoate by a strain of Nocardia corynebacteroides.
    Labeda DP; Jackson MA; Kuo TM; Nakamura LK
    Curr Microbiol; 2004 Aug; 49(2):133-5. PubMed ID: 15297919
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rhodococcal systematics: problems and developments.
    Goodfellow M; Alderson G; Chun J
    Antonie Van Leeuwenhoek; 1998; 74(1-3):3-20. PubMed ID: 10068784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.
    de los Reyes FL; Ritter W; Raskin L
    Appl Environ Microbiol; 1997 Mar; 63(3):1107-17. PubMed ID: 9055425
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phenotypic and phylogenetic description of an Italian isolate of "Microthrix parvicella".
    Rossetti S; Christensson C; Blackall LL; Tandoi V
    J Appl Microbiol; 1997 Apr; 82(4):405-10. PubMed ID: 9134714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Next-generation systematics: An innovative approach to resolve the structure of complex prokaryotic taxa.
    Sangal V; Goodfellow M; Jones AL; Schwalbe EC; Blom J; Hoskisson PA; Sutcliffe IC
    Sci Rep; 2016 Dec; 6():38392. PubMed ID: 27924912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensitivity to capreomycin and prothionamide in strains of Mycobacterium, Nocardia, Rhodococcus, and related taxa for taxonomical purposes.
    Ridell M
    Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1983 Sep; 255(2-3):309-16. PubMed ID: 6196927
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Numerical taxonomy of Skermania piniformis and related isolates from activated sludge.
    Sodell JA; Seviour RJ
    J Appl Microbiol; 1998 Feb; 84(2):272-84. PubMed ID: 9669877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Culture-based MEMS device to track Gordonia in activated sludge.
    Polaczyk A; Kinkle B; Papautsky I; Oerther DB
    Environ Sci Technol; 2006 Apr; 40(7):2269-74. PubMed ID: 16646463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of the genome of the polyvalent lytic bacteriophage GTE2, which has potential for biocontrol of Gordonia-, Rhodococcus-, and Nocardia-stabilized foams in activated sludge plants.
    Petrovski S; Seviour RJ; Tillett D
    Appl Environ Microbiol; 2011 Jun; 77(12):3923-9. PubMed ID: 21498753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical and chemical classification of Nocardia amarae.
    Goodfellow M; Minnikin DE; Todd C; Alderson G; Minnikin SM; Collins MD
    J Gen Microbiol; 1982 Jun; 128(6):1283-97. PubMed ID: 7119738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbial lipids and stable foam formation in the activated sludge process.
    Goddard AJ; Forster CF
    Microbios; 1991; 66(268-269):133-42. PubMed ID: 1907713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Substrate uptake by Gordonia amarae in activated sludge foams by FISH-MAR.
    Carr EL; Eales KL; Seviour RJ
    Water Sci Technol; 2006; 54(1):39-45. PubMed ID: 16898135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.
    Liu M; Gill JJ; Young R; Summer EJ
    Sci Rep; 2015 Sep; 5():13754. PubMed ID: 26349678
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fatty acid methyl ester (FAME) technology for monitoring biological foaming in activated sludge: full scale plant verification.
    Lee JW; Cha DK; Kim I; Son A; Ahn KH
    Environ Technol; 2008 Feb; 29(2):199-206. PubMed ID: 18613618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological control of problematic bacterial populations causing foaming in activated sludge wastewater treatment plants-phage therapy and beyond.
    Petrovski S; Batinovic S; Rose JJA; Seviour RJ
    Lett Appl Microbiol; 2022 Oct; 75(4):776-784. PubMed ID: 35598184
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants.
    Davenport RJ; Curtis TP; Goodfellow M; Stainsby FM; Bingley M
    Appl Environ Microbiol; 2000 Mar; 66(3):1158-66. PubMed ID: 10698786
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome sequences and characterization of the related Gordonia phages GTE5 and GRU1 and their use as potential biocontrol agents.
    Petrovski S; Tillett D; Seviour RJ
    Appl Environ Microbiol; 2012 Jan; 78(1):42-7. PubMed ID: 22038604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.