These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12216739)

  • 1. The acidity of uracil and uracil analogs in the gas phase: four surprisingly acidic sites and biological implications.
    Kurinovich MA; Lee JK
    J Am Soc Mass Spectrom; 2002 Aug; 13(8):985-95. PubMed ID: 12216739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-phase acidity studies of multiple sites of adenine and adenine derivatives.
    Sharma S; Lee JK
    J Org Chem; 2004 Oct; 69(21):7018-25. PubMed ID: 15471447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-phase thermochemical properties of pyrimidine nucleobases.
    Liu M; Li T; Amegayibor FS; Cardoso DS; Fu Y; Lee JK
    J Org Chem; 2008 Dec; 73(23):9283-91. PubMed ID: 18973382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidity of adenine and adenine derivatives and biological implications. A computational and experimental gas-phase study.
    Sharma S; Lee JK
    J Org Chem; 2002 Nov; 67(24):8360-5. PubMed ID: 12444612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uracil and thymine reactivity in the gas phase: the S(N)2 reaction and implications for electron delocalization in leaving groups.
    Zhachkina A; Lee JK
    J Am Chem Soc; 2009 Dec; 131(51):18376-85. PubMed ID: 19928991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-phase thermochemical properties of the damaged base O(6)-methylguanine versus adenine and guanine.
    Zhachkina A; Liu M; Sun X; Amegayibor FS; Lee JK
    J Org Chem; 2009 Oct; 74(19):7429-40. PubMed ID: 19731957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gas phase proton affinity of uracil: measuring multiple basic sites and implications for the enzyme mechanism of orotidine 5'-monophosphate decarboxylase.
    Kurinovich MA; Phillips LM; Sharma S; Lee JK
    Chem Commun (Camb); 2002 Oct; (20):2354-5. PubMed ID: 12430437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acidity and proton affinity of the damaged base 1,N6-ethenoadenine in the gas phase versus in solution: intrinsic reactivity and biological implications.
    Liu M; Xu M; Lee JK
    J Org Chem; 2008 Aug; 73(15):5907-14. PubMed ID: 18593189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hydrogen-bonding and stacking interactions with amino acids on the acidity of uracil.
    Hunter KC; Millen AL; Wetmore SD
    J Phys Chem B; 2007 Feb; 111(7):1858-71. PubMed ID: 17256895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of the 6-carbanion of uracil analogues: mechanistic implications for model reactions of orotidine-5'-monophosphate decarboxylase.
    Wong FM; Capule CC; Wu W
    Org Lett; 2006 Dec; 8(26):6019-22. PubMed ID: 17165919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
    Stivers JT; Pankiewicz KW; Watanabe KA
    Biochemistry; 1999 Jan; 38(3):952-63. PubMed ID: 9893991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio prediction of the gas- and solution-phase acidities of strong Brønsted acids: the calculation of pKa values less than -10.
    Gutowski KE; Dixon DA
    J Phys Chem A; 2006 Nov; 110(43):12044-54. PubMed ID: 17064194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why are selenouracils as basic as but stronger acids than uracil in the gas phase?
    Trujillo C; Mó O; Yáñez M
    Chemphyschem; 2008 Aug; 9(12):1715-20. PubMed ID: 18618533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidity and proton affinity of hypoxanthine in the gas phase versus in solution: intrinsic reactivity and biological implications.
    Sun X; Lee JK
    J Org Chem; 2007 Aug; 72(17):6548-55. PubMed ID: 17655363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-phase acidities of cysteine-polyalanine peptides I: A(3,4)CSH and HSCA(3,4).
    Ren J; Tan JP; Harper RT
    J Phys Chem A; 2009 Oct; 113(41):10903-12. PubMed ID: 19754094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine).
    Singh JS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():625-40. PubMed ID: 25244296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating the interaction between amino acids and DNA: a combined matrix-isolation FT-IR and theoretical study of the 1-methyluracil·glycine H-bond complexes using a dual sublimation furnace.
    Boeckx B; Maes G
    J Phys Chem B; 2012 Oct; 116(39):11890-8. PubMed ID: 22963512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
    Luo N; Mehler E; Osman R
    Biochemistry; 1999 Jul; 38(29):9209-20. PubMed ID: 10413495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of [M(Ura-H)(H2 O)n ](+) (M = Mg, Ca, Sr, Ba; n = 1-3) complexes in the gas phase by IRMPD spectroscopy and theoretical studies.
    Power B; Haldys V; Salpin JY; Fridgen TD
    J Mass Spectrom; 2016 Mar; 51(3):236-44. PubMed ID: 26956390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of an active site residue in Escherichia coli uracil-DNA glycosylase: effect on DNA binding, uracil inhibition and catalysis.
    Shroyer MJ; Bennett SE; Putnam CD; Tainer JA; Mosbaugh DW
    Biochemistry; 1999 Apr; 38(15):4834-45. PubMed ID: 10200172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.