These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12217060)
1. Stereocomplex formation by enantiomeric poly(lactic acid) graft-type phospholipid polymers for tissue engineering. Watanabe J; Eriguchi T; Ishihara K Biomacromolecules; 2002; 3(5):1109-14. PubMed ID: 12217060 [TBL] [Abstract][Full Text] [Related]
2. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers. Watanabe J; Eriguchi T; Ishihara K Biomacromolecules; 2002; 3(6):1375-83. PubMed ID: 12425679 [TBL] [Abstract][Full Text] [Related]
3. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H; Tezuka Y Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Yang F; Murugan R; Ramakrishna S; Wang X; Ma YX; Wang S Biomaterials; 2004 May; 25(10):1891-900. PubMed ID: 14738853 [TBL] [Abstract][Full Text] [Related]
5. Electrospinning of poly(lactic acid) stereocomplex nanofibers. Tsuji H; Nakano M; Hashimoto M; Takashima K; Katsura S; Mizuno A Biomacromolecules; 2006 Dec; 7(12):3316-20. PubMed ID: 17154458 [TBL] [Abstract][Full Text] [Related]
6. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
7. Stereo-complex crystallization of poly(lactic acid)s in block-copolymer phase separation. Uehara H; Karaki Y; Wada S; Yamanobe T ACS Appl Mater Interfaces; 2010 Oct; 2(10):2707-10. PubMed ID: 20836564 [TBL] [Abstract][Full Text] [Related]
8. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation. Spasova M; Mespouille L; Coulembier O; Paneva D; Manolova N; Rashkov I; Dubois P Biomacromolecules; 2009 May; 10(5):1217-23. PubMed ID: 19331403 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering. Carfì Pavia F; La Carrubba V; Brucato V; Palumbo FS; Giammona G Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():301-8. PubMed ID: 24907764 [TBL] [Abstract][Full Text] [Related]
10. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications. Sadiasa A; Nguyen TH; Lee BT J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous Formation of a Hydrogel Composed of Water-Soluble Phospholipid Polymers Grafted with Enantiomeric Oligo(lactic acid) Chains. Takami K; Watanabe J; Takai M; Ishihara K J Biomater Sci Polym Ed; 2011; 22(1-3):77-89. PubMed ID: 20546676 [TBL] [Abstract][Full Text] [Related]
13. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
14. Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Spasova M; Manolova N; Paneva D; Mincheva R; Dubois P; Rashkov I; Maximova V; Danchev D Biomacromolecules; 2010 Jan; 11(1):151-9. PubMed ID: 19947641 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylcholine and poly(D,L-lactic acid) containing copolymers as substrates for cell adhesion. Watanabe J; Ishihara K Artif Organs; 2003 Mar; 27(3):242-8. PubMed ID: 12662210 [TBL] [Abstract][Full Text] [Related]
16. In vitro biocompatibility of different polyester membranes. Vaquette C; Fawzi-Grancher S; Lavalle P; Frochot C; Viriot ML; Muller S; Wang X Biomed Mater Eng; 2006; 16(4 Suppl):S131-6. PubMed ID: 16823104 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. Lou T; Wang X; Song G Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011 [TBL] [Abstract][Full Text] [Related]
18. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Fukushima K; Chang YH; Kimura Y Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929 [TBL] [Abstract][Full Text] [Related]
19. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528 [TBL] [Abstract][Full Text] [Related]
20. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds. Ghosh S; Viana JC; Reis RL; Mano JF J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]