These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12217060)
21. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering. Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291 [TBL] [Abstract][Full Text] [Related]
22. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji H Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948 [TBL] [Abstract][Full Text] [Related]
23. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation. Zhu X; Zhong T; Huang R; Wan A J Biomater Sci Polym Ed; 2015; 26(17):1286-96. PubMed ID: 26324121 [TBL] [Abstract][Full Text] [Related]
24. [Manufacture and study of porous poly(l-lactic acid) (PLLA)/beta-tricalcium phosphate (beta-TCP) composite]. Chen R; Chen H; Han J; Zhou D; Zheng C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):177-80. PubMed ID: 11450528 [TBL] [Abstract][Full Text] [Related]
25. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation. Kum CH; Cho Y; Seo SH; Joung YK; Ahn DJ; Han DK Small; 2014 Sep; 10(18):3783-94. PubMed ID: 24820693 [TBL] [Abstract][Full Text] [Related]
26. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds. Flaibani M; Elvassore N Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970 [TBL] [Abstract][Full Text] [Related]
27. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
28. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold. Zhu L; Zhang Y; Ji Y J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114 [TBL] [Abstract][Full Text] [Related]
29. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity]. Zhang Y; Li B; Li J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):135-9. PubMed ID: 17357459 [TBL] [Abstract][Full Text] [Related]
30. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology. Bao J; Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Wu L; Zhang H; Zhang J; Ding J Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446 [TBL] [Abstract][Full Text] [Related]
32. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds. Saito E; Liu Y; Migneco F; Hollister SJ Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030 [TBL] [Abstract][Full Text] [Related]
33. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. Chen J; Chu B; Hsiao BS J Biomed Mater Res A; 2006 Nov; 79(2):307-17. PubMed ID: 16817203 [TBL] [Abstract][Full Text] [Related]
34. A poly(L-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses. François S; Chakfé N; Durand B; Laroche G Acta Biomater; 2009 Sep; 5(7):2418-28. PubMed ID: 19345622 [TBL] [Abstract][Full Text] [Related]
35. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Hong Z; Reis RL; Mano JF Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885 [TBL] [Abstract][Full Text] [Related]
36. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Zhang R; Ma PX J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949 [TBL] [Abstract][Full Text] [Related]
37. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574 [TBL] [Abstract][Full Text] [Related]
38. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Hou Q; Grijpma DW; Feijen J Biomaterials; 2003 May; 24(11):1937-47. PubMed ID: 12615484 [TBL] [Abstract][Full Text] [Related]
39. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Gong Y; Zhou Q; Gao C; Shen J Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355 [TBL] [Abstract][Full Text] [Related]
40. A study on a tissue-engineered bone using rhBMP-2 induced periosteal cells with a porous nano-hydroxyapatite/collagen/poly(L-lactic acid) scaffold. Zhang C; Hu YY; Cui FZ; Zhang SM; Ruan DK Biomed Mater; 2006 Jun; 1(2):56-62. PubMed ID: 18460757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]