These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 12217519)

  • 1. An "integrated model" of programmed ribosomal frameshifting.
    Harger JW; Meskauskas A; Dinman JD
    Trends Biochem Sci; 2002 Sep; 27(9):448-54. PubMed ID: 12217519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting.
    Liao PY; Choi YS; Dinman JD; Lee KH
    Nucleic Acids Res; 2011 Jan; 39(1):300-12. PubMed ID: 20823091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs.
    Smith AM; Costello MS; Kettring AH; Wingo RJ; Moore SD
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21769-21779. PubMed ID: 31591196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression.
    Advani VM; Dinman JD
    Bioessays; 2016 Jan; 38(1):21-6. PubMed ID: 26661048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting.
    Champagne J; Mordente K; Nagel R; Agami R
    Trends Genet; 2022 Nov; 38(11):1123-1133. PubMed ID: 35641342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stochastic model of translation with -1 programmed ribosomal frameshifting.
    Bailey BL; Visscher K; Watkins J
    Phys Biol; 2014 Feb; 11(1):016009. PubMed ID: 24501223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots.
    Wu B; Zhang H; Sun R; Peng S; Cooperman BS; Goldman YE; Chen C
    Nucleic Acids Res; 2018 Oct; 46(18):9736-9748. PubMed ID: 30011005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting.
    Kobayashi Y; Zhuang J; Peltz S; Dougherty J
    J Biol Chem; 2010 Jun; 285(26):19776-84. PubMed ID: 20418372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element.
    Plant EP; Wang P; Jacobs JL; Dinman JD
    Nucleic Acids Res; 2004; 32(2):784-90. PubMed ID: 14762205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target.
    Kelly JA; Woodside MT; Dinman JD
    Virology; 2021 Feb; 554():75-82. PubMed ID: 33387787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms and implications of programmed translational frameshifting.
    Dinman JD
    Wiley Interdiscip Rev RNA; 2012; 3(5):661-73. PubMed ID: 22715123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of ribosomal pausing during programmed -1 translational frameshifting.
    Lopinski JD; Dinman JD; Bruenn JA
    Mol Cell Biol; 2000 Feb; 20(4):1095-103. PubMed ID: 10648594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Ribosomal Frameshifting as an Antiviral Strategy: From HIV-1 to SARS-CoV-2.
    Anokhina VS; Miller BL
    Acc Chem Res; 2021 Sep; 54(17):3349-3361. PubMed ID: 34403258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting.
    Sun Y; Abriola L; Niederer RO; Pedersen SF; Alfajaro MM; Silva Monteiro V; Wilen CB; Ho YC; Gilbert WV; Surovtseva YV; Lindenbach BD; Guo JU
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34185680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the stimulators of protein-directed ribosomal frameshifting in Theiler's murine encephalomyelitis virus.
    Napthine S; Bell S; Hill CH; Brierley I; Firth AE
    Nucleic Acids Res; 2019 Sep; 47(15):8207-8223. PubMed ID: 31180502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transactivation of programmed ribosomal frameshifting by a viral protein.
    Li Y; Treffers EE; Napthine S; Tas A; Zhu L; Sun Z; Bell S; Mark BL; van Veelen PA; van Hemert MJ; Firth AE; Brierley I; Snijder EJ; Fang Y
    Proc Natl Acad Sci U S A; 2014 May; 111(21):E2172-81. PubMed ID: 24825891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific effects of ribosome-tethered molecular chaperones on programmed -1 ribosomal frameshifting.
    Muldoon-Jacobs KL; Dinman JD
    Eukaryot Cell; 2006 Apr; 5(4):762-70. PubMed ID: 16607023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex dynamics under tension in a high-efficiency frameshift stimulatory structure.
    Halma MTJ; Ritchie DB; Cappellano TR; Neupane K; Woodside MT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19500-19505. PubMed ID: 31409714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energy landscape of -1 ribosomal frameshifting.
    Choi J; O'Loughlin S; Atkins JF; Puglisi JD
    Sci Adv; 2020 Jan; 6(1):eaax6969. PubMed ID: 31911945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.