BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12217520)

  • 1. Powering the peptide pump: TAP crosstalk with energetic nucleotides.
    van Endert PM; Saveanu L; Hewitt EW; Lehner P
    Trends Biochem Sci; 2002 Sep; 27(9):454-61. PubMed ID: 12217520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct functional properties of the TAP subunits coordinate the nucleotide-dependent transport cycle.
    Alberts P; Daumke O; Deverson EV; Howard JC; Knittler MR
    Curr Biol; 2001 Feb; 11(4):242-51. PubMed ID: 11250152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distinct nucleotide binding states of the transporter associated with antigen processing (TAP) are regulated by the nonhomologous C-terminal tails of TAP1 and TAP2.
    Bouabe H; Knittler MR
    Eur J Biochem; 2003 Nov; 270(22):4531-46. PubMed ID: 14622282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions formed by individually expressed TAP1 and TAP2 polypeptide subunits.
    Antoniou AN; Ford S; Pilley ES; Blake N; Powis SJ
    Immunology; 2002 Jun; 106(2):182-9. PubMed ID: 12047747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyses of conformational states of the transporter associated with antigen processing (TAP) protein in a native cellular membrane environment.
    Geng J; Sivaramakrishnan S; Raghavan M
    J Biol Chem; 2013 Dec; 288(52):37039-47. PubMed ID: 24196954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nucleotides and peptide substrate for stability and functional state of the human ABC family transporters associated with antigen processing.
    van Endert PM
    J Biol Chem; 1999 May; 274(21):14632-8. PubMed ID: 10329656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of chimeric proteins to investigate the role of transporter associated with antigen processing (TAP) structural domains in peptide binding and translocation.
    Arora S; Lapinski PE; Raghavan M
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7241-6. PubMed ID: 11416206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of the transport complex TAP in cellular immune recognition.
    Abele R; Tampé R
    Biochim Biophys Acta; 1999 Dec; 1461(2):405-19. PubMed ID: 10581370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptides induce ATP hydrolysis at both subunits of the transporter associated with antigen processing.
    Chen M; Abele R; Tampé R
    J Biol Chem; 2003 Aug; 278(32):29686-92. PubMed ID: 12777379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide binding by TAP mediates association with peptide and release of assembled MHC class I molecules.
    Knittler MR; Alberts P; Deverson EV; Howard JC
    Curr Biol; 1999 Sep; 9(18):999-1008. PubMed ID: 10508608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional asymmetry of the ATP-binding-cassettes of the ABC transporter TAP is determined by intrinsic properties of the nucleotide binding domains.
    Daumke O; Knittler MR
    Eur J Biochem; 2001 Sep; 268(17):4776-86. PubMed ID: 11532014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic site modifications of TAP1 and TAP2 and their functional consequences.
    Perria CL; Rajamanickam V; Lapinski PE; Raghavan M
    J Biol Chem; 2006 Dec; 281(52):39839-51. PubMed ID: 17068338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tapasin interacts with the membrane-spanning domains of both TAP subunits and enhances the structural stability of TAP1 x TAP2 Complexes.
    Raghuraman G; Lapinski PE; Raghavan M
    J Biol Chem; 2002 Nov; 277(44):41786-94. PubMed ID: 12213826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct functions and cooperative interaction of the subunits of the transporter associated with antigen processing (TAP).
    Karttunen JT; Lehner PJ; Gupta SS; Hewitt EW; Cresswell P
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7431-6. PubMed ID: 11381133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of domain boundaries within the N-termini of TAP1 and TAP2 and their importance in tapasin binding and tapasin-mediated increase in peptide loading of MHC class I.
    Procko E; Raghuraman G; Wiley DC; Raghavan M; Gaudet R
    Immunol Cell Biol; 2005 Oct; 83(5):475-82. PubMed ID: 16174096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ABC-transporter signature motif is required for peptide translocation but not peptide binding by TAP.
    Hewitt EW; Lehner PJ
    Eur J Immunol; 2003 Feb; 33(2):422-7. PubMed ID: 12645939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane topology and dimerization of the two subunits of the transporter associated with antigen processing reveal a three-domain structure.
    Vos JC; Spee P; Momburg F; Neefjes J
    J Immunol; 1999 Dec; 163(12):6679-85. PubMed ID: 10586064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Head-head/tail-tail relative orientation of the pore-forming domains of the heterodimeric ABC transporter TAP.
    Vos JC; Reits EA; Wojcik-Jacobs E; Neefjes J
    Curr Biol; 2000 Jan; 10(1):1-7. PubMed ID: 10660295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct functions of the ATP binding cassettes of transporters associated with antigen processing: a mutational analysis of Walker A and B sequences.
    Saveanu L; Daniel S; van Endert PM
    J Biol Chem; 2001 Jun; 276(25):22107-13. PubMed ID: 11290739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human transporter associated with antigen processing: molecular models to describe peptide binding competent states.
    Corradi V; Singh G; Tieleman DP
    J Biol Chem; 2012 Aug; 287(33):28099-111. PubMed ID: 22700967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.