BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12217858)

  • 21. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction.
    Wei Y; Zavilowitz B; Satlin LM; Wang WH
    J Biol Chem; 2007 Mar; 282(9):6455-62. PubMed ID: 17194699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of dietary K intake on apical small-conductance K channel in CCD: role of protein tyrosine kinase.
    Wei Y; Bloom P; Lin D; Gu R; Wang WH
    Am J Physiol Renal Physiol; 2001 Aug; 281(2):F206-12. PubMed ID: 11457712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1.
    Lin DH; Yue P; Pan C; Sun P; Wang WH
    J Am Soc Nephrol; 2011 Jun; 22(6):1087-98. PubMed ID: 21566059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects.
    Wang WH
    Am J Physiol Renal Physiol; 2006 Jan; 290(1):F14-9. PubMed ID: 16339961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of protein-tyrosine phosphatase stimulates the dynamin-dependent endocytosis of ROMK1.
    Sterling H; Lin DH; Gu RM; Dong K; Hebert SC; Wang WH
    J Biol Chem; 2002 Feb; 277(6):4317-23. PubMed ID: 11719519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase.
    Xu ZC; Yang Y; Hebert SC
    J Biol Chem; 1996 Apr; 271(16):9313-9. PubMed ID: 8621594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD.
    Li D; Wei Y; Babilonia E; Wang Z; Wang WH
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F806-12. PubMed ID: 16204406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The A kinase anchoring protein is required for mediating the effect of protein kinase A on ROMK1 channels.
    Ali S; Chen X; Lu M; Xu JZ; Lerea KM; Hebert SC; Wang WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):10274-8. PubMed ID: 9707637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
    Liou HH; Zhou SS; Huang CL
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5820-5. PubMed ID: 10318968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney.
    Kohda Y; Ding W; Phan E; Housini I; Wang J; Star RA; Huang CL
    Kidney Int; 1998 Oct; 54(4):1214-23. PubMed ID: 9767537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion.
    Dong K; Yan Q; Lu M; Wan L; Hu H; Guo J; Boulpaep E; Wang W; Giebisch G; Hebert SC; Wang T
    J Biol Chem; 2016 Mar; 291(10):5259-69. PubMed ID: 26728465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct.
    Chu PY; Quigley R; Babich V; Huang CL
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1179-87. PubMed ID: 12952855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH.
    Fakler B; Schultz JH; Yang J; Schulte U; Brandle U; Zenner HP; Jan LY; Ruppersberg JP
    EMBO J; 1996 Aug; 15(16):4093-9. PubMed ID: 8861938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization of the ROMK protein on apical membranes of rat kidney nephron segments.
    Xu JZ; Hall AE; Peterson LN; Bienkowski MJ; Eessalu TE; Hebert SC
    Am J Physiol; 1997 Nov; 273(5):F739-48. PubMed ID: 9374837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PKC expression is regulated by dietary K intake and mediates internalization of SK channels in the CCD.
    Sterling H; Lin DH; Chen YJ; Wei Y; Wang ZJ; Lai J; Wang WH
    Am J Physiol Renal Physiol; 2004 Jun; 286(6):F1072-8. PubMed ID: 15130898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of angiotensin type 1 receptor impairs renal ability of K conservation in response to K restriction.
    Jin Y; Wang Y; Wang ZJ; Lin DH; Wang WH
    Am J Physiol Renal Physiol; 2009 May; 296(5):F1179-84. PubMed ID: 19211683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms.
    Lazrak A; Liu Z; Huang CL
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1615-20. PubMed ID: 16428287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms.
    Boim MA; Ho K; Shuck ME; Bienkowski MJ; Block JH; Slightom JL; Yang Y; Brenner BM; Hebert SC
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1132-40. PubMed ID: 7611454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of an ERG K+ current by Src tyrosine kinase.
    Cayabyab FS; Schlichter LC
    J Biol Chem; 2002 Apr; 277(16):13673-81. PubMed ID: 11834728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activated Src tyrosine kinase phosphorylates Tyr-457 of bovine GTPase-activating protein (GAP) in vitro and the corresponding residue of rat GAP in vivo.
    Park S; Liu X; Pawson T; Jove R
    J Biol Chem; 1992 Aug; 267(24):17194-200. PubMed ID: 1512257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.