These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 12218025)
1. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. Bringhurst RM; Gage DJ J Bacteriol; 2002 Oct; 184(19):5385-92. PubMed ID: 12218025 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti. Garcia PP; Bringhurst RM; Arango Pinedo C; Gage DJ J Bacteriol; 2010 Nov; 192(21):5725-35. PubMed ID: 20817764 [TBL] [Abstract][Full Text] [Related]
3. Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production. Pinedo CA; Bringhurst RM; Gage DJ J Bacteriol; 2008 Apr; 190(8):2947-56. PubMed ID: 18281401 [TBL] [Abstract][Full Text] [Related]
4. An AraC-like transcriptional activator is required for induction of genes needed for alpha-galactoside utilization in Sinorhizobium meliloti. Bringhurst RM; Gage DJ FEMS Microbiol Lett; 2000 Jul; 188(1):23-7. PubMed ID: 10867229 [TBL] [Abstract][Full Text] [Related]
5. HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti. Pinedo CA; Gage DJ J Bacteriol; 2009 Jan; 191(1):298-309. PubMed ID: 18931135 [TBL] [Abstract][Full Text] [Related]
6. alpha-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. Gage DJ; Long SR J Bacteriol; 1998 Nov; 180(21):5739-48. PubMed ID: 9791127 [TBL] [Abstract][Full Text] [Related]
7. Genetic characterization of a Rhizobium meliloti lactose utilization locus. Jelesko JG; Leigh JA Mol Microbiol; 1994 Jan; 11(1):165-73. PubMed ID: 8145640 [TBL] [Abstract][Full Text] [Related]
8. Organic acid mediated repression of sugar utilization in rhizobia. Iyer B; Rajput MS; Jog R; Joshi E; Bharwad K; Rajkumar S Microbiol Res; 2016 Nov; 192():211-220. PubMed ID: 27664739 [TBL] [Abstract][Full Text] [Related]
10. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. Gosalbes MJ; Monedero V; Pérez-Martínez G J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959 [TBL] [Abstract][Full Text] [Related]
11. Regulation of lactose utilization genes in Staphylococcus xylosus. Bassias J; Brückner R J Bacteriol; 1998 May; 180(9):2273-9. PubMed ID: 9573174 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. Rosey EL; Stewart GC J Bacteriol; 1992 Oct; 174(19):6159-70. PubMed ID: 1400164 [TBL] [Abstract][Full Text] [Related]
13. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti. Zhang Y; Smallbone LA; diCenzo GC; Morton R; Finan TM BMC Microbiol; 2016 Jul; 16(1):163. PubMed ID: 27456220 [TBL] [Abstract][Full Text] [Related]
15. Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti. Goodwin RA; Gage DJ J Bacteriol; 2014 May; 196(10):1901-7. PubMed ID: 24633875 [TBL] [Abstract][Full Text] [Related]
16. Glutamine biosynthesis and the utilization of succinate and glutamine by Rhizobium etli and Sinorhizobium meliloti. Encarnación S; Calderón J; Gelbard AS; Cooper AJL; Mora J Microbiology (Reading); 1998 Sep; 144 ( Pt 9)():2629-2638. PubMed ID: 9782512 [TBL] [Abstract][Full Text] [Related]
17. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939 [TBL] [Abstract][Full Text] [Related]
18. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti. Chen AM; Wang YB; Jie S; Yu AY; Luo L; Yu GQ; Zhu JB; Wang YZ Res Microbiol; 2010 Sep; 161(7):556-64. PubMed ID: 20594941 [TBL] [Abstract][Full Text] [Related]
19. Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase (pckA) gene. Osterås M; Driscoll BT; Finan TM J Bacteriol; 1995 Mar; 177(6):1452-60. PubMed ID: 7883700 [TBL] [Abstract][Full Text] [Related]
20. Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense. Mukherjee A; Ghosh S J Bacteriol; 1987 Sep; 169(9):4361-7. PubMed ID: 2957360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]