BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12218025)

  • 1. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    J Bacteriol; 2002 Oct; 184(19):5385-92. PubMed ID: 12218025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Garcia PP; Bringhurst RM; Arango Pinedo C; Gage DJ
    J Bacteriol; 2010 Nov; 192(21):5725-35. PubMed ID: 20817764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production.
    Pinedo CA; Bringhurst RM; Gage DJ
    J Bacteriol; 2008 Apr; 190(8):2947-56. PubMed ID: 18281401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An AraC-like transcriptional activator is required for induction of genes needed for alpha-galactoside utilization in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    FEMS Microbiol Lett; 2000 Jul; 188(1):23-7. PubMed ID: 10867229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti.
    Pinedo CA; Gage DJ
    J Bacteriol; 2009 Jan; 191(1):298-309. PubMed ID: 18931135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization.
    Gage DJ; Long SR
    J Bacteriol; 1998 Nov; 180(21):5739-48. PubMed ID: 9791127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic characterization of a Rhizobium meliloti lactose utilization locus.
    Jelesko JG; Leigh JA
    Mol Microbiol; 1994 Jan; 11(1):165-73. PubMed ID: 8145640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic acid mediated repression of sugar utilization in rhizobia.
    Iyer B; Rajput MS; Jog R; Joshi E; Bharwad K; Rajkumar S
    Microbiol Res; 2016 Nov; 192():211-220. PubMed ID: 27664739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The
    Morabbi Heravi K; Watzlawick H; Altenbuchner J
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31138628
    [No Abstract]   [Full Text] [Related]  

  • 10. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Pérez-Martínez G
    J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of lactose utilization genes in Staphylococcus xylosus.
    Bassias J; Brückner R
    J Bacteriol; 1998 May; 180(9):2273-9. PubMed ID: 9573174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans.
    Rosey EL; Stewart GC
    J Bacteriol; 1992 Oct; 174(19):6159-70. PubMed ID: 1400164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti.
    Zhang Y; Smallbone LA; diCenzo GC; Morton R; Finan TM
    BMC Microbiol; 2016 Jul; 16(1):163. PubMed ID: 27456220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimeric lac repressors exhibit phase-dependent co-operativity.
    Müller J; Barker A; Oehler S; Müller-Hill B
    J Mol Biol; 1998 Dec; 284(4):851-7. PubMed ID: 9837708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti.
    Goodwin RA; Gage DJ
    J Bacteriol; 2014 May; 196(10):1901-7. PubMed ID: 24633875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine biosynthesis and the utilization of succinate and glutamine by Rhizobium etli and Sinorhizobium meliloti.
    Encarnación S; Calderón J; Gelbard AS; Cooper AJL; Mora J
    Microbiology (Reading); 1998 Sep; 144 ( Pt 9)():2629-2638. PubMed ID: 9782512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr.
    Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J
    J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti.
    Chen AM; Wang YB; Jie S; Yu AY; Luo L; Yu GQ; Zhu JB; Wang YZ
    Res Microbiol; 2010 Sep; 161(7):556-64. PubMed ID: 20594941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase (pckA) gene.
    Osterås M; Driscoll BT; Finan TM
    J Bacteriol; 1995 Mar; 177(6):1452-60. PubMed ID: 7883700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense.
    Mukherjee A; Ghosh S
    J Bacteriol; 1987 Sep; 169(9):4361-7. PubMed ID: 2957360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.