BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 12218366)

  • 21. Molecular cloning and characterization of hazel pollen protein (70 kD) as a luminal binding protein (BiP): a novel cross-reactive plant allergen.
    Gruehn S; Suphioglu C; O'Hehir RE; Volkmann D
    Int Arch Allergy Immunol; 2003 Jun; 131(2):91-100. PubMed ID: 12811017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Allergen cross-reactivity in allergic rhinitis and oral-allergy syndrome: a bioinformatic protein sequence analysis.
    Platt M; Howell S; Sachdeva R; Dumont C
    Int Forum Allergy Rhinol; 2014 Jul; 4(7):559-64. PubMed ID: 24799331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ALLERDB database and integrated bioinformatic tools for assessment of allergenicity and allergic cross-reactivity.
    Zhang ZH; Tan SC; Koh JL; Falus A; Brusic V
    Cell Immunol; 2006 Dec; 244(2):90-6. PubMed ID: 17467675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing genetically modified crops to minimize the risk of increased food allergy: a review.
    Goodman RE; Hefle SL; Taylor SL; van Ree R
    Int Arch Allergy Immunol; 2005 Jun; 137(2):153-66. PubMed ID: 15947471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interpreting the biological relevance of bioinformatic analyses with T-DNA sequence for protein allergenicity.
    Harper B; McClain S; Ganko EW
    Regul Toxicol Pharmacol; 2012 Aug; 63(3):426-32. PubMed ID: 22668749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.
    Panda R; Ariyarathna H; Amnuaycheewa P; Tetteh A; Pramod SN; Taylor SL; Ballmer-Weber BK; Goodman RE
    Allergy; 2013 Feb; 68(2):142-51. PubMed ID: 23205714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristic motifs for families of allergenic proteins.
    Ivanciuc O; Garcia T; Torres M; Schein CH; Braun W
    Mol Immunol; 2009 Feb; 46(4):559-68. PubMed ID: 18951633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting potential IgE-reactive sites on food proteins using a sequence and structure database, SDAP-food.
    Ivanciuc O; Mathura V; Midoro-Horiuti T; Braun W; Goldblum RM; Schein CH
    J Agric Food Chem; 2003 Jul; 51(16):4830-7. PubMed ID: 14705920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential allergenicity of Medicago sativa investigated by a combined IgE-binding inhibition, proteomics and in silico approach.
    Yakhlef M; Giangrieco I; Ciardiello MA; Fiume I; Mari A; Souiki L; Pocsfalvi G
    J Sci Food Agric; 2021 Feb; 101(3):1182-1192. PubMed ID: 32790067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Value of eight-amino-acid matches in predicting the allergenicity status of proteins: an empirical bioinformatic investigation.
    Herman RA; Song P; Thirumalaiswamysekhar A
    Clin Mol Allergy; 2009 Oct; 7():9. PubMed ID: 19874602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of Bar, Barnase, and Barstar recombinant proteins expressed in genetically engineered Brassica juncea (Indian mustard) for potential risks of food allergy using bioinformatics and literature searches.
    Siruguri V; Bharatraj DK; Vankudavath RN; Mendu VV; Gupta V; Goodman RE
    Food Chem Toxicol; 2015 Sep; 83():93-102. PubMed ID: 26079618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of putative and potential cross-reactive chickpea (Cicer arietinum) allergens through an in silico approach.
    Kulkarni A; Ananthanarayan L; Raman K
    Comput Biol Chem; 2013 Dec; 47():149-55. PubMed ID: 24099701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive COMPARE database reduces allergenic risk of novel food proteins.
    Herman RA; Song P
    GM Crops Food; 2022 Dec; 13(1):112-118. PubMed ID: 35674136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Safety assessment by in vitro digestibility and allergenicity of genetically modified maize with an amaranth 11S globulin.
    Sinagawa-García SR; Rascón-Cruz Q; Valdez-Ortiz A; Medina-Godoy S; Escobar-Gutiérrez A; Paredes-López O
    J Agric Food Chem; 2004 May; 52(9):2709-14. PubMed ID: 15113180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-React: a new structural bioinformatics method for predicting allergen cross-reactivity.
    Negi SS; Braun W
    Bioinformatics; 2017 Apr; 33(7):1014-1020. PubMed ID: 28062447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural insight into protein T1, the non-allergenic member of the Bet v 1 allergen family-An in silico analysis.
    Ghosh D; Gupta-Bhattacharya S
    Mol Immunol; 2008 Jan; 45(2):456-62. PubMed ID: 17658604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of possible allergenicity of hypothetical ORFs in common food crops using current bioinformatic guidelines and its implications for the safety assessment of GM crops.
    Young GJ; Zhang S; Mirsky HP; Cressman RF; Cong B; Ladics GS; Zhong CX
    Food Chem Toxicol; 2012 Oct; 50(10):3741-51. PubMed ID: 22867756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathogenesis-related proteins of plants as allergens.
    Midoro-Horiuti T; Brooks EG; Goldblum RM
    Ann Allergy Asthma Immunol; 2001 Oct; 87(4):261-71. PubMed ID: 11686417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of food protein allergenicity: a bioinformatic learning systems approach.
    Zorzet A; Gustafsson M; Hammerling U
    In Silico Biol; 2002; 2(4):525-34. PubMed ID: 12611632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lack of detectable allergenicity in genetically modified maize containing "Cry" proteins as compared to native maize based on in silico & in vitro analysis.
    Mathur C; Kathuria PC; Dahiya P; Singh AB
    PLoS One; 2015; 10(2):e0117340. PubMed ID: 25706412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.