These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12218706)

  • 1. On-line versus off-line vestibular-evoked control of goal-directed arm movements.
    Bresciani JP; Blouin J; Sarlegna F; Bourdin C; Vercher JL; Gauthier GM
    Neuroreport; 2002 Aug; 13(12):1563-6. PubMed ID: 12218706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the nature of the vestibular control of arm-reaching movements during whole-body rotations.
    Bresciani JP; Gauthier GM; Vercher JL; Blouin J
    Exp Brain Res; 2005 Aug; 164(4):431-41. PubMed ID: 15895218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion of visuo-ocular and vestibular signals in arm motor control.
    Guillaud E; Gauthier G; Vercher JL; Blouin J
    J Neurophysiol; 2006 Feb; 95(2):1134-46. PubMed ID: 16221749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular feedback maintains reaching accuracy during body movement.
    Smith CP; Reynolds RF
    J Physiol; 2017 Feb; 595(4):1339-1349. PubMed ID: 27730646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction in the Vestibular Control of Arm Movements.
    Blouin J; Bresciani JP; Guillaud E; Simoneau M
    Multisens Res; 2015; 28(5-6):487-505. PubMed ID: 26595953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galvanic vestibular stimulation in humans produces online arm movement deviations when reaching towards memorized visual targets.
    Bresciani JP; Blouin J; Popov K; Bourdin C; Sarlegna F; Vercher JL; Gauthier GM
    Neurosci Lett; 2002 Jan; 318(1):34-8. PubMed ID: 11786219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency loud acoustic stimulation and goal-directed arm movements.
    Troiani D; Ferraresi A; Zei U; Manni E
    Acta Otolaryngol; 2004 May; 124(4):395-9. PubMed ID: 15224861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation.
    Gdowski GT; McCrea RA
    J Neurophysiol; 1999 Jul; 82(1):436-49. PubMed ID: 10400970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Updating visual space during passive and voluntary head-in-space movements.
    Blouin J; Labrousse L; Simoneau M; Vercher JL; Gauthier GM
    Exp Brain Res; 1998 Sep; 122(1):93-100. PubMed ID: 9772116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling reaching movements during self-motion: body-fixed versus Earth-fixed targets.
    Guillaud E; Simoneau M; Gauthier G; Blouin J
    Motor Control; 2006 Oct; 10(4):330-47. PubMed ID: 17293616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets.
    Becker W; Nasios G; Raab S; Jürgens R
    Exp Brain Res; 2002 Jun; 144(4):458-74. PubMed ID: 12037631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the body rotation-induced torques on the arm during reaching movements: evidence from a proprioceptively deafferented subject.
    Guillaud E; Simoneau M; Blouin J
    Neuropsychologia; 2011 Jun; 49(7):2055-9. PubMed ID: 21458472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestibular contribution to the planning of reach trajectories.
    Bockisch CJ; Haslwanter T
    Exp Brain Res; 2007 Sep; 182(3):387-97. PubMed ID: 17562026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of medial vestibulospinal tract cells during rotation and ocular movement in the alert squirrel monkey.
    Boyle R
    J Neurophysiol; 1993 Nov; 70(5):2176-80. PubMed ID: 8294978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H
    Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of reference frames for movement planning in peripersonal space representation.
    Ghafouri M; Lestienne FG
    Exp Brain Res; 2006 Feb; 169(1):24-36. PubMed ID: 16261340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in object-oriented arm movements that precede the transition to goal-directed reaching in infancy.
    Lee MH; Ranganathan R; Newell KM
    Dev Psychobiol; 2011 Nov; 53(7):685-93. PubMed ID: 21432846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the control of arm movement during body motion as revealed by EMG analyses.
    Blouin J; Guillaud E; Bresciani JP; Guerraz M; Simoneau M
    Brain Res; 2010 Jan; 1309():40-52. PubMed ID: 19883633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.