These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 12219097)

  • 1. Transient neural activity in human parietal cortex during spatial attention shifts.
    Yantis S; Schwarzbach J; Serences JT; Carlson RL; Steinmetz MA; Pekar JJ; Courtney SM
    Nat Neurosci; 2002 Oct; 5(10):995-1002. PubMed ID: 12219097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD; Woldorff MG; Mangun GR
    Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attention mechanisms in visual search -- an fMRI study.
    Leonards U; Sunaert S; Van Hecke P; Orban GA
    J Cogn Neurosci; 2000; 12 Suppl 2():61-75. PubMed ID: 11506648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voluntary orienting is dissociated from target detection in human posterior parietal cortex.
    Corbetta M; Kincade JM; Ollinger JM; McAvoy MP; Shulman GL
    Nat Neurosci; 2000 Mar; 3(3):292-7. PubMed ID: 10700263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of object-based attention in human cortex.
    Serences JT; Schwarzbach J; Courtney SM; Golay X; Yantis S
    Cereb Cortex; 2004 Dec; 14(12):1346-57. PubMed ID: 15166105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attentional responses to unattended stimuli in human parietal cortex.
    Vandenberghe R; Geeraerts S; Molenberghs P; Lafosse C; Vandenbulcke M; Peeters K; Peeters R; Van Hecke P; Orban GA
    Brain; 2005 Dec; 128(Pt 12):2843-57. PubMed ID: 15857928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of emotional effects on spatial attention in the human visual cortex.
    Pourtois G; Vuilleumier P
    Prog Brain Res; 2006; 156():67-91. PubMed ID: 17015075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional specificity of superior parietal mediation of spatial shifting.
    Vandenberghe R; Gitelman DR; Parrish TB; Mesulam MM
    Neuroimage; 2001 Sep; 14(3):661-73. PubMed ID: 11506539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two electrophysiological stages of spatial orienting towards fearful faces: early temporo-parietal activation preceding gain control in extrastriate visual cortex.
    Pourtois G; Thut G; Grave de Peralta R; Michel C; Vuilleumier P
    Neuroimage; 2005 May; 26(1):149-63. PubMed ID: 15862215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex.
    Serences JT; Yantis S
    Cereb Cortex; 2007 Feb; 17(2):284-93. PubMed ID: 16514108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orienting attention to locations in perceptual versus mental representations.
    Nobre AC; Coull JT; Maquet P; Frith CD; Vandenberghe R; Mesulam MM
    J Cogn Neurosci; 2004 Apr; 16(3):363-73. PubMed ID: 15072672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The representation of spatial attention in human parietal cortex dynamically modulates with performance.
    Huddleston WE; DeYoe EA
    Cereb Cortex; 2008 Jun; 18(6):1272-80. PubMed ID: 17962221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention.
    Natale E; Marzi CA; Girelli M; Pavone EF; Pollmann S
    Eur J Neurosci; 2006 May; 23(9):2511-21. PubMed ID: 16706858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural representation of object location and route direction: an event-related fMRI study.
    Janzen G; Weststeijn CG
    Brain Res; 2007 Aug; 1165():116-25. PubMed ID: 17651709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objects are highlighted by spatial attention.
    Martínez A; Teder-Sälejärvi W; Vazquez M; Molholm S; Foxe JJ; Javitt DC; Di Russo F; Worden MS; Hillyard SA
    J Cogn Neurosci; 2006 Feb; 18(2):298-310. PubMed ID: 16494688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.