These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 12219823)
1. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Fisher JP; Dean D; Mikos AG Biomaterials; 2002 Nov; 23(22):4333-43. PubMed ID: 12219823 [TBL] [Abstract][Full Text] [Related]
2. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. Peter SJ; Kim P; Yasko AW; Yaszemski MJ; Mikos AG J Biomed Mater Res; 1999 Mar; 44(3):314-21. PubMed ID: 10397934 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. Fisher JP; Holland TA; Dean D; Engel PS; Mikos AG J Biomater Sci Polym Ed; 2001; 12(6):673-87. PubMed ID: 11556743 [TBL] [Abstract][Full Text] [Related]
4. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks. Timmer MD; Ambrose CG; Mikos AG J Biomed Mater Res A; 2003 Sep; 66(4):811-8. PubMed ID: 12926033 [TBL] [Abstract][Full Text] [Related]
6. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Timmer MD; Ambrose CG; Mikos AG Biomaterials; 2003 Feb; 24(4):571-7. PubMed ID: 12437951 [TBL] [Abstract][Full Text] [Related]
7. 3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties. Luo Y; Le Fer G; Dean D; Becker ML Biomacromolecules; 2019 Apr; 20(4):1699-1708. PubMed ID: 30807696 [TBL] [Abstract][Full Text] [Related]
8. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG Biomaterials; 2002 Nov; 23(22):4381-7. PubMed ID: 12219828 [TBL] [Abstract][Full Text] [Related]
9. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part I. Determination of network structure. Fisher JP; Timmer MD; Holland TA; Dean D; Engel PS; Mikos AG Biomacromolecules; 2003; 4(5):1327-34. PubMed ID: 12959602 [TBL] [Abstract][Full Text] [Related]
10. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG Biomaterials; 2002 Nov; 23(22):4373-80. PubMed ID: 12219827 [TBL] [Abstract][Full Text] [Related]
11. Effect of physiological temperature on the mechanical properties and network structure of biodegradable poly(propylene fumarate)-based networks. Timmer MD; Horch RA; Ambrose CG; Mikos AG J Biomater Sci Polym Ed; 2003; 14(4):369-82. PubMed ID: 12747675 [TBL] [Abstract][Full Text] [Related]
12. Characterization of an injectable, degradable polymer for mechanical stabilization of mandibular fractures. Henslee AM; Yoon DM; Lu BY; Yu J; Arango AA; Marruffo LP; Seng L; Anver TD; Ather H; Nair MB; Piper SO; Demian N; Wong ME; Kasper FK; Mikos AG J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):529-38. PubMed ID: 24934595 [TBL] [Abstract][Full Text] [Related]
13. Development of a biodegradable bone cement for craniofacial applications. Henslee AM; Gwak DH; Mikos AG; Kasper FK J Biomed Mater Res A; 2012 Sep; 100(9):2252-9. PubMed ID: 22499285 [TBL] [Abstract][Full Text] [Related]
14. Poly (propylene fumarate)/β-calcium phosphate composites for enhanced bone repair. Ma C; Ma Z; Yang F; Wang J; Liu C Biomed Mater; 2019 Apr; 14(4):045002. PubMed ID: 30901761 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. Shung AK; Timmer MD; Jo S; Engel PS; Mikos AG J Biomater Sci Polym Ed; 2002; 13(1):95-108. PubMed ID: 12003078 [TBL] [Abstract][Full Text] [Related]
16. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. Lan PX; Lee JW; Seol YJ; Cho DW J Mater Sci Mater Med; 2009 Jan; 20(1):271-9. PubMed ID: 18763023 [TBL] [Abstract][Full Text] [Related]
17. Optimization of photocrosslinkable resin components and 3D printing process parameters. Guerra AJ; Lammel-Lindemann J; Katko A; Kleinfehn A; Rodriguez CA; Catalani LH; Becker ML; Ciurana J; Dean D Acta Biomater; 2019 Oct; 97():154-161. PubMed ID: 31352105 [TBL] [Abstract][Full Text] [Related]
18. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Lee KW; Wang S; Fox BC; Ritman EL; Yaszemski MJ; Lu L Biomacromolecules; 2007 Apr; 8(4):1077-84. PubMed ID: 17326677 [TBL] [Abstract][Full Text] [Related]
19. Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer. Yan J; Li J; Runge MB; Dadsetan M; Chen Q; Lu L; Yaszemski MJ J Biomater Sci Polym Ed; 2011; 22(4-6):489-504. PubMed ID: 20566042 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. Lee JW; Lan PX; Kim B; Lim G; Cho DW J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):1-9. PubMed ID: 18335437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]