BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12220076)

  • 1. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing.
    Holzapfel GA; Stadler M; Schulze-Bauer CA
    Ann Biomed Eng; 2002 Jun; 30(6):753-67. PubMed ID: 12220076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional finite element model for arterial clamping.
    Gasser TC; Schulze-Bauer CA; Holzapfel GA
    J Biomech Eng; 2002 Aug; 124(4):355-63. PubMed ID: 12188202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions.
    Kiousis DE; Gasser TC; Holzapfel GA
    Ann Biomed Eng; 2007 Nov; 35(11):1857-69. PubMed ID: 17647105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs.
    Holzapfel GA; Stadler M; Gasser TC
    J Biomech Eng; 2005 Feb; 127(1):166-80. PubMed ID: 15868799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques.
    Holzapfel GA; Sommer G; Regitnig P
    J Biomech Eng; 2004 Oct; 126(5):657-65. PubMed ID: 15648819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transversally isotropic elasto-damage constitutive model for the periodontal ligament.
    Natali AN; Pavan PG; Carniel EL; Dorow C
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):329-36. PubMed ID: 14675953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling plaque fissuring and dissection during balloon angioplasty intervention.
    Gasser TC; Holzapfel GA
    Ann Biomed Eng; 2007 May; 35(5):711-23. PubMed ID: 17385047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A methodology to study the morphologic changes in lesions during in vitro angioplasty using MRI and image processing.
    Auer M; Regitnig P; Stollberger R; Ebner F; Holzapfel GA
    Med Image Anal; 2008 Apr; 12(2):163-73. PubMed ID: 17988929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear stress, vascular remodeling and neointimal formation.
    Wentzel JJ; Gijsen FJ; Stergiopulos N; Serruys PW; Slager CJ; Krams R
    J Biomech; 2003 May; 36(5):681-8. PubMed ID: 12694998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modelling of fracture in human arteries.
    Ferrara A; Pandolfi A
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):553-67. PubMed ID: 19230149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse finite element characterization of soft tissues.
    Kauer M; Vuskovic V; Dual J; Szekely G; Bajka M
    Med Image Anal; 2002 Sep; 6(3):275-87. PubMed ID: 12270232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic response of human iliac arteries in-vitro to balloon angioplasty using high-resolution CT.
    Medynsky AO; Holdsworth DW; Sherebrin MH; Rankin RN; Roach MR
    J Biomech; 1998 Aug; 31(8):747-51. PubMed ID: 9796675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A projection method to extract biological membrane models from 3D material models.
    Roohbakhshan F; Duong TX; Sauer RA
    J Mech Behav Biomed Mater; 2016 May; 58():90-104. PubMed ID: 26455810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.