These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 12220079)
1. Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration. DiSilvestro MR; Suh JK Ann Biomed Eng; 2002 Jun; 30(6):792-800. PubMed ID: 12220079 [TBL] [Abstract][Full Text] [Related]
2. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. Setton LA; Zhu W; Mow VC J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359 [TBL] [Abstract][Full Text] [Related]
3. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. DiSilvestro MR; Suh JK J Biomech; 2001 Apr; 34(4):519-25. PubMed ID: 11266676 [TBL] [Abstract][Full Text] [Related]
4. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103 [TBL] [Abstract][Full Text] [Related]
5. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200 [TBL] [Abstract][Full Text] [Related]
6. Finite element formulation of biphasic poroviscoelastic model for articular cartilage. Suh JK; Bai S J Biomech Eng; 1998 Apr; 120(2):195-201. PubMed ID: 10412380 [TBL] [Abstract][Full Text] [Related]
7. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage. Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384 [TBL] [Abstract][Full Text] [Related]
8. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722 [TBL] [Abstract][Full Text] [Related]
9. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. Ateshian GA; Chahine NO; Basalo IM; Hung CT J Biomech; 2004 Mar; 37(3):391-400. PubMed ID: 14757459 [TBL] [Abstract][Full Text] [Related]
11. Measurement of the layered compressive properties of trypsin-treated articular cartilage: an ultrasound investigation. Zheng YP; Ding CX; Bai J; Mak AF; Qin L Med Biol Eng Comput; 2001 Sep; 39(5):534-41. PubMed ID: 11712649 [TBL] [Abstract][Full Text] [Related]
12. Frictional response of bovine articular cartilage under creep loading following proteoglycan digestion with chondroitinase ABC. Basalo IM; Chen FH; Hung CT; Ateshian GA J Biomech Eng; 2006 Feb; 128(1):131-4. PubMed ID: 16532626 [TBL] [Abstract][Full Text] [Related]
13. Quantification of cartilage biomechanical and biochemical properties via T1rho magnetic resonance imaging. Wheaton AJ; Dodge GR; Elliott DM; Nicoll SB; Reddy R Magn Reson Med; 2005 Nov; 54(5):1087-93. PubMed ID: 16200568 [TBL] [Abstract][Full Text] [Related]
14. In vitro degradation of articular cartilage: does trypsin treatment produce consistent results? Moody HR; Brown CP; Bowden JC; Crawford RW; McElwain DL; Oloyede AO J Anat; 2006 Aug; 209(2):259-67. PubMed ID: 16879604 [TBL] [Abstract][Full Text] [Related]
15. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression. Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124 [TBL] [Abstract][Full Text] [Related]
16. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates. DiSilvestro MR; Zhu Q; Suh JK J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties. Jahangir S; Esrafilian A; Ebrahimi M; Stenroth L; Alkjær T; Henriksen M; Englund M; Mononen ME; Korhonen RK; Tanska P J Biomech; 2023 Nov; 160():111800. PubMed ID: 37797566 [TBL] [Abstract][Full Text] [Related]
18. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation. McGann ME; Bonitsky CM; Ovaert TC; Wagner DR J Mech Behav Biomed Mater; 2014 Jun; 34():264-72. PubMed ID: 24631625 [TBL] [Abstract][Full Text] [Related]
19. Real-time ultrasonic assessment of progressive proteoglycan depletion in articular cartilage. Wang Q; Zheng YP; Qin L; Huang QH; Lam WL; Leung G; Guo X; Lu HB Ultrasound Med Biol; 2008 Jul; 34(7):1085-92. PubMed ID: 18295393 [TBL] [Abstract][Full Text] [Related]
20. A biphasic visco-hyperelastic damage model for articular cartilage: application to micromechanical modelling of the osteoarthritis-induced degradation behaviour. Liu D; Ma S; Stoffel M; Markert B Biomech Model Mechanobiol; 2020 Jun; 19(3):1055-1077. PubMed ID: 31802293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]