BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 12220187)

  • 1. RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine.
    King MY; Redman KL
    Biochemistry; 2002 Sep; 41(37):11218-25. PubMed ID: 12220187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase.
    Walbott H; Husson C; Auxilien S; Golinelli-Pimpaneau B
    RNA; 2007 Jul; 13(7):967-73. PubMed ID: 17475914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved motif in the yeast nucleolar protein Nop2p contains an essential cysteine residue.
    King M; Ton D; Redman KL
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):29-35. PubMed ID: 9854021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and genetic analysis of RNA cap guanine-N2 methyltransferases from Giardia lamblia and Schizosaccharomyces pombe.
    Hausmann S; Ramirez A; Schneider S; Schwer B; Shuman S
    Nucleic Acids Res; 2007; 35(5):1411-20. PubMed ID: 17284461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases.
    Bujnicki JM; Feder M; Ayres CL; Redman KL
    Nucleic Acids Res; 2004; 32(8):2453-63. PubMed ID: 15121902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans.
    Ozanick S; Krecic A; Andersland J; Anderson JT
    RNA; 2005 Aug; 11(8):1281-90. PubMed ID: 16043508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of protein-RNA complexes using natural RNA and mutant forms of an RNA cytosine methyltransferase.
    Redman KL
    Biomacromolecules; 2006 Dec; 7(12):3321-6. PubMed ID: 17154459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic rRNA Modification by Yeast 5-Methylcytosine-Methyltransferases and Human Proliferation-Associated Antigen p120.
    Bourgeois G; Ney M; Gaspar I; Aigueperse C; Schaefer M; Kellner S; Helm M; Motorin Y
    PLoS One; 2015; 10(7):e0133321. PubMed ID: 26196125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively.
    Sharma S; Yang J; Watzinger P; Kötter P; Entian KD
    Nucleic Acids Res; 2013 Oct; 41(19):9062-76. PubMed ID: 23913415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA).
    Brzezicha B; Schmidt M; Makalowska I; Jarmolowski A; Pienkowska J; Szweykowska-Kulinska Z
    Nucleic Acids Res; 2006; 34(20):6034-43. PubMed ID: 17071714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive motifs derived from cytosine methyltransferases.
    Pósfai J; Bhagwat AS; Pósfai G; Roberts RJ
    Nucleic Acids Res; 1989 Apr; 17(7):2421-35. PubMed ID: 2717398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.
    Krishnamohan A; Jackman JE
    Nucleic Acids Res; 2017 Sep; 45(15):9019-9029. PubMed ID: 28911116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis.
    Hamdane D; Argentini M; Cornu D; Myllykallio H; Skouloubris S; Hui-Bon-Hoa G; Golinelli-Pimpaneau B
    J Biol Chem; 2011 Oct; 286(42):36268-80. PubMed ID: 21846722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae.
    Anderson J; Phan L; Hinnebusch AG
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5173-8. PubMed ID: 10779558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family.
    Watanabe K; Nureki O; Fukai S; Ishii R; Okamoto H; Yokoyama S; Endo Y; Hori H
    J Biol Chem; 2005 Mar; 280(11):10368-77. PubMed ID: 15637073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes.
    Guy MP; Phizicky EM
    RNA; 2015 Jan; 21(1):61-74. PubMed ID: 25404562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active.
    Gabbara S; Sheluho D; Bhagwat AS
    Biochemistry; 1995 Jul; 34(27):8914-23. PubMed ID: 7612633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trm4 and Nsun2 RNA:m5C methyltransferases form metabolite-dependent, covalent adducts with previously methylated RNA.
    Moon HJ; Redman KL
    Biochemistry; 2014 Nov; 53(45):7132-44. PubMed ID: 25375641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of direct targets and modified bases of RNA cytosine methyltransferases.
    Khoddami V; Cairns BR
    Nat Biotechnol; 2013 May; 31(5):458-64. PubMed ID: 23604283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.