These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 12220265)

  • 21. The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana.
    Poppe C; Sweere U; Drumm-Herrel H; Schäfer E
    Plant J; 1998 Nov; 16(4):465-71. PubMed ID: 9881166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction.
    Guo H; Mockler T; Duong H; Lin C
    Science; 2001 Jan; 291(5503):487-90. PubMed ID: 11161203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue.
    Wade HK; Bibikova TN; Valentine WJ; Jenkins GI
    Plant J; 2001 Mar; 25(6):675-85. PubMed ID: 11319034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction.
    Mockler TC; Guo H; Yang H; Duong H; Lin C
    Development; 1999 May; 126(10):2073-82. PubMed ID: 10207133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development.
    Mazzella MA; Cerdán PD; Staneloni RJ; Casal JJ
    Development; 2001 Jun; 128(12):2291-9. PubMed ID: 11493548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses.
    Kang X; Chong J; Ni M
    Plant Cell; 2005 Mar; 17(3):822-35. PubMed ID: 15705950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana.
    Vandenbussche F; Habricot Y; Condiff AS; Maldiney R; Van der Straeten D; Ahmad M
    Plant J; 2007 Feb; 49(3):428-41. PubMed ID: 17217468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis.
    Gangappa SN; Maurya JP; Yadav V; Chattopadhyay S
    PLoS One; 2013; 8(4):e62194. PubMed ID: 23646119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of flowering time by Arabidopsis photoreceptors.
    Guo H; Yang H; Mockler TC; Lin C
    Science; 1998 Feb; 279(5355):1360-3. PubMed ID: 9478898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.
    Ahmad M; Cashmore AR
    Plant J; 1997 Mar; 11(3):421-7. PubMed ID: 9107032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light.
    Usami T; Mochizuki N; Kondo M; Nishimura M; Nagatani A
    Plant Cell Physiol; 2004 Dec; 45(12):1798-808. PubMed ID: 15653798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Arabidopsis circadian clock component interacts with both CRY1 and phyB.
    Jarillo JA; Capel J; Tang RH; Yang HQ; Alonso JM; Ecker JR; Cashmore AR
    Nature; 2001 Mar; 410(6827):487-90. PubMed ID: 11260718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photomophogenesis: Phytochrome takes a partner!
    Whitelam GC; Halliday KJ
    Curr Biol; 1999 Mar; 9(6):R225-7. PubMed ID: 10209091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro.
    Ahmad M; Jarillo JA; Smirnova O; Cashmore AR
    Mol Cell; 1998 Jun; 1(7):939-48. PubMed ID: 9651577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance.
    Kleine T; Kindgren P; Benedict C; Hendrickson L; Strand A
    Plant Physiol; 2007 Jul; 144(3):1391-406. PubMed ID: 17478635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional interaction of phytochrome B and cryptochrome 2.
    Más P; Devlin PF; Panda S; Kay SA
    Nature; 2000 Nov; 408(6809):207-11. PubMed ID: 11089975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blue light-directed destabilization of the pea Lhcb1*4 transcript depends on sequences within the 5' untranslated region.
    Anderson MB; Folta K; Warpeha KM; Gibbons J; Gao J; Kaufman LS
    Plant Cell; 1999 Aug; 11(8):1579-90. PubMed ID: 10449589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HFR1, a phytochrome A-signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana.
    Kim YM; Woo JC; Song PS; Soh MS
    Plant J; 2002 Jun; 30(6):711-9. PubMed ID: 12061902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-action between phytochrome B and HY4 in Arabidopsis thaliana.
    Casal JJ; Boccalandro H
    Planta; 1995; 197(2):213-8. PubMed ID: 8547813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ELF3: a circadian safeguard to buffer effects of light.
    Carré IA
    Trends Plant Sci; 2002 Jan; 7(1):4-6. PubMed ID: 11804815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.