These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12220516)

  • 81. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene.
    Tassabehji M; Newton VE; Read AP
    Nat Genet; 1994 Nov; 8(3):251-5. PubMed ID: 7874167
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Melanocytes and the microphthalmia transcription factor network.
    Steingrímsson E; Copeland NG; Jenkins NA
    Annu Rev Genet; 2004; 38():365-411. PubMed ID: 15568981
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Altered expression of the iron transporter Nramp1 (Slc11a1) during fetal development of the retinal pigment epithelium in microphthalmia-associated transcription factor Mitf(mi) and Mitf(vitiligo) mouse mutants.
    Gelineau-van Waes J; Smith L; van Waes M; Wilberding J; Eudy JD; Bauer LK; Maddox J
    Exp Eye Res; 2008 Feb; 86(2):419-33. PubMed ID: 18191835
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein.
    Hodgkinson CA; Moore KJ; Nakayama A; Steingrímsson E; Copeland NG; Jenkins NA; Arnheiter H
    Cell; 1993 Jul; 74(2):395-404. PubMed ID: 8343963
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Suppression of microphthalmia transcriptional activity by its association with protein kinase C-interacting protein 1 in mast cells.
    Razin E; Zhang ZC; Nechushtan H; Frenkel S; Lee YN; Arudchandran R; Rivera J
    J Biol Chem; 1999 Nov; 274(48):34272-6. PubMed ID: 10567402
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Allele-specific genetic interactions between Mitf and Kit affect melanocyte development.
    Wen B; Chen Y; Li H; Wang J; Shen J; Ma A; Qu J; Bismuth K; Debbache J; Arnheiter H; Hou L
    Pigment Cell Melanoma Res; 2010 Jun; 23(3):441-7. PubMed ID: 20374522
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcepsilonRI-activated mast cells.
    Lee YN; Nechushtan H; Figov N; Razin E
    Immunity; 2004 Feb; 20(2):145-51. PubMed ID: 14975237
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mutation in intron 6 of the hamster Mitf gene leads to skipping of the subsequent exon and creates a novel animal model for the human Waardenburg syndrome type II.
    Graw J; Pretsch W; Löster J
    Genetics; 2003 Jul; 164(3):1035-41. PubMed ID: 12871913
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Molecular cause of the severe functional deficiency in osteoclasts by an arginine deletion in the basic domain of Mi transcription factor.
    Nomura S; Sakuma T; Higashibata Y; Oboki K; Sato M
    J Bone Miner Metab; 2001; 19(3):183-7. PubMed ID: 11368304
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Interpretation of complex phenotypes: lessons from the Mitf gene.
    Steingrímsson E
    Pigment Cell Melanoma Res; 2010 Dec; 23(6):736-40. PubMed ID: 21823251
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Microphthalmia (mi) in murine mast cells: regulation of its stimuli-mediated expression on the translational level.
    Nechushtan H; Zhang Z; Razin E
    Blood; 1997 Apr; 89(8):2999-3008. PubMed ID: 9108421
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The rat microphthalmia-associated transcription factor gene (Mitf) maps at 4q34-q41 and is mutated in the mib rats.
    Opdecamp K; Vanvooren P; Rivière M; Arnheiter H; Motta R; Szpirer J; Szpirer C
    Mamm Genome; 1998 Aug; 9(8):617-21. PubMed ID: 9680380
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The PI3K pathway drives the maturation of mast cells via microphthalmia transcription factor.
    Ma P; Mali RS; Munugalavadla V; Krishnan S; Ramdas B; Sims E; Martin H; Ghosh J; Li S; Chan RJ; Krystal G; Craig AW; Takemoto C; Kapur R
    Blood; 2011 Sep; 118(13):3459-69. PubMed ID: 21791431
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A helix-loop-helix transcription factor-like gene is located at the mi locus.
    Hughes MJ; Lingrel JB; Krakowsky JM; Anderson KP
    J Biol Chem; 1993 Oct; 268(28):20687-90. PubMed ID: 8407885
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Mouse microphthalmia-associated transcription factor (Mitf) mutations affect the structure of the retinal vasculature.
    Daníelsson SB; García-Llorca A; Reynisson H; Eysteinsson T
    Acta Ophthalmol; 2022 Dec; 100(8):911-918. PubMed ID: 35348289
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Mast cells provide a "HINT" to the function of an exotic nucleotide.
    Weinstein IB; Li H
    Immunity; 2004 Feb; 20(2):119-20. PubMed ID: 14975234
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Deciphering the early-response transcription factor networks in mast cells.
    Nechushtan H; Razin E
    Immunol Today; 1998 Oct; 19(10):441-4. PubMed ID: 9785666
    [No Abstract]   [Full Text] [Related]  

  • 98. Insight into the microphthalmia gene.
    Moore KJ
    Trends Genet; 1995 Nov; 11(11):442-8. PubMed ID: 8578601
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis.
    Oppezzo A; Rosselli F
    Cell Biosci; 2021 Jan; 11(1):18. PubMed ID: 33441180
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Substance P Administered after Myocardial Infarction Upregulates Microphthalmia-Associated Transcription Factor, GATA4, and the Expansion of c-Kit
    Jeong YM; Cheng XW; Kim W
    Stem Cells Int; 2020; 2020():1835950. PubMed ID: 32104183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.