These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
646 related articles for article (PubMed ID: 12221013)
1. Changes in phosphodiesterase activity in the developing rat submandibular gland. Tanaka S; Shimooka S; Shimomura H Arch Oral Biol; 2002 Aug; 47(8):567-76. PubMed ID: 12221013 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships. Ko WC; Shih CM; Lai YH; Chen JH; Huang HL Biochem Pharmacol; 2004 Nov; 68(10):2087-94. PubMed ID: 15476679 [TBL] [Abstract][Full Text] [Related]
3. Evidence for the activity of five adenosine-3',5'-monophosphate-degrading phosphodiesterase isozymes in the adult rat neocortex. Sutor B; Mantell K; Bacher B Neurosci Lett; 1998 Aug; 252(1):57-60. PubMed ID: 9756358 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Verde I; Vandecasteele G; Lezoualc'h F; Fischmeister R Br J Pharmacol; 1999 May; 127(1):65-74. PubMed ID: 10369457 [TBL] [Abstract][Full Text] [Related]
5. Effects of rolipram, pimobendan and zaprinast on ischaemia-induced dysrhythmias and on ventricular cyclic nucleotide content in the anaesthetized rat. Carceles MD; Aleixandre F; Fuente T; López-Vidal J; Laorden ML Eur J Anaesthesiol; 2003 Mar; 20(3):205-11. PubMed ID: 12650491 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. Suvarna NU; O'Donnell JM J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724 [TBL] [Abstract][Full Text] [Related]
7. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord. de Vente J; Markerink-van Ittersum M; Vles JS J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445 [TBL] [Abstract][Full Text] [Related]
8. Phosphodiesterases do not limit beta1-adrenoceptor-mediated sinoatrial tachycardia: evidence with PDE3 and PDE4 in rabbits and PDE1-5 in rats. Kaumann AJ; Galindo-Tovar A; Escudero E; Vargas ML Naunyn Schmiedebergs Arch Pharmacol; 2009 Nov; 380(5):421-30. PubMed ID: 19693491 [TBL] [Abstract][Full Text] [Related]
9. Role of phosphodiesterase and protein kinase G on nitric oxide-induced inhibition of prolactin release from the rat anterior pituitary. Velardez MO; De Laurentiis A; del Carmen Díaz M; Lasaga M; Pisera D; Seilicovich A; Duvilanski BH Eur J Endocrinol; 2000 Aug; 143(2):279-84. PubMed ID: 10913949 [TBL] [Abstract][Full Text] [Related]
10. Cyclic nucleotide hydrolysis in bovine aortic endothelial cells in culture: differential regulation in cobblestone and spindle phenotypes. Keravis T; Komas N; Lugnier C J Vasc Res; 2000; 37(4):235-49. PubMed ID: 10965223 [TBL] [Abstract][Full Text] [Related]
11. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide. Bellamy TC; Garthwaite J Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024 [TBL] [Abstract][Full Text] [Related]
12. Characterization of 3',5' cyclic nucleotide phosphodiesterase activity in Y79 retinoblastoma cells: absence of functional PDE6. White JB; Thompson WJ; Pittler SJ Mol Vis; 2004 Oct; 10():738-49. PubMed ID: 15480303 [TBL] [Abstract][Full Text] [Related]
13. Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Netherton SJ; Maurice DH Mol Pharmacol; 2005 Jan; 67(1):263-72. PubMed ID: 15475573 [TBL] [Abstract][Full Text] [Related]
14. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis. Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454 [TBL] [Abstract][Full Text] [Related]
15. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors. Schoeffter P; Lugnier C; Demesy-Waeldele F; Stoclet JC Biochem Pharmacol; 1987 Nov; 36(22):3965-72. PubMed ID: 2825708 [TBL] [Abstract][Full Text] [Related]
16. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Rutten K; Prickaerts J; Hendrix M; van der Staay FJ; Sik A; Blokland A Eur J Pharmacol; 2007 Mar; 558(1-3):107-12. PubMed ID: 17207788 [TBL] [Abstract][Full Text] [Related]
18. Effect of type-selective inhibitors on cyclic nucleotide phosphodiesterase activity and insulin secretion in the clonal insulin secreting cell line BRIN-BD11. Ahmad M; Abdel-Wahab YH; Tate R; Flatt PR; Pyne NJ; Furman BL Br J Pharmacol; 2000 Mar; 129(6):1228-34. PubMed ID: 10725272 [TBL] [Abstract][Full Text] [Related]
19. Phosphodiesterase 3 as a potential target for therapy of malignant tumors in the submandibular gland. Murata T; Sugatani T; Shimizu K; Manganiello VC; Tagawa T Anticancer Drugs; 2001 Jan; 12(1):79-83. PubMed ID: 11272291 [TBL] [Abstract][Full Text] [Related]
20. Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig. Johnson WB; Katugampola S; Able S; Napier C; Harding SE Life Sci; 2012 Feb; 90(9-10):328-36. PubMed ID: 22261303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]