BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12221370)

  • 1. Re: Shimamoto, et al. Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis. Spine 2001;26:2701-8.
    Korovessis P
    Spine (Phila Pa 1976); 2002 Sep; 27(17):1953-4. PubMed ID: 12221370
    [No Abstract]   [Full Text] [Related]  

  • 2. Biomechanical comparison of lumbosacral fixation techniques in a calf spine model.
    Lebwohl NH; Cunningham BW; Dmitriev A; Shimamoto N; Gooch L; Devlin V; Boachie-Adjei O; Wagner TA
    Spine (Phila Pa 1976); 2002 Nov; 27(21):2312-20. PubMed ID: 12438978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation.
    Shimamoto N; Kotani Y; Shono Y; Kadoya K; Abumi K; Kaneda K; Minami A
    Spine (Phila Pa 1976); 2001 Dec; 26(24):2701-8. PubMed ID: 11740358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis of iliac screw fixation in spinal deformity instrumentation.
    Desrochers-Perrault F; Aubin CE; Wang X; Schwend RM
    Clin Biomech (Bristol, Avon); 2014 Jun; 29(6):614-21. PubMed ID: 24906687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmental spinal instrumentation in the management of scoliosis.
    Steinmetz MP; Rajpal S; Trost G
    Neurosurgery; 2008 Sep; 63(3 Suppl):131-8. PubMed ID: 18812915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immediate complications of Cotrel-Dubousset instrumentation to the sacro-pelvis. A clinical and biomechanical study.
    Camp JF; Caudle R; Ashmun RD; Roach J
    Spine (Phila Pa 1976); 1990 Sep; 15(9):932-41. PubMed ID: 2259984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomechanical analysis of Zielke, Kaneda, and Cotrel-Dubousset instrumentations in thoracolumbar scoliosis. A calf spine model.
    Shono Y; Kaneda K; Yamamoto I
    Spine (Phila Pa 1976); 1991 Nov; 16(11):1305-11. PubMed ID: 1750005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumentation in structural scoliosis.
    Harrington PR
    Mod Trends Orthop; 1972; 5():95-123. PubMed ID: 5040929
    [No Abstract]   [Full Text] [Related]  

  • 9. Impact of constrained dual-screw anchorage on holding strength and the resistance to cyclic loading in anterior spinal deformity surgery: a comparative biomechanical study.
    Koller H; Fierlbeck J; Auffarth A; Niederberger A; Stephan D; Hitzl W; Augat P; Zenner J; Blocher M; Blocher M; Resch H; Mayer M
    Spine (Phila Pa 1976); 2014 Mar; 39(6):E390-8. PubMed ID: 24384666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical analysis of 4 types of pedicle screws for scoliotic spine instrumentation.
    Wang X; Aubin CE; Crandall D; Parent S; Labelle H
    Spine (Phila Pa 1976); 2012 Jun; 37(14):E823-35. PubMed ID: 22310096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Galveston experience with L-rod instrumentation for adolescent idiopathic scoliosis.
    Allen BL; Ferguson RL
    Clin Orthop Relat Res; 1988 Apr; (229):59-69. PubMed ID: 3280204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wisconsin and other instrumentation for posterior spinal fusion.
    Phillips WA; Hensinger RN
    Clin Orthop Relat Res; 1988 Apr; (229):44-51. PubMed ID: 3280203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dwyer Instrumentation in anterior fusion of the spine.
    Hall JE
    J Bone Joint Surg Am; 1981 Sep; 63(7):1188-90. PubMed ID: 7276060
    [No Abstract]   [Full Text] [Related]  

  • 14. A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques.
    Cain CM; Schleicher P; Gerlach R; Pflugmacher R; Scholz M; Kandziora F
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2631-6. PubMed ID: 16319749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posterior instrumentation in scoliosis.
    Webb JK; Burwell RG; Cole AA; Lieberman I
    Eur Spine J; 1995; 4(1):2-5. PubMed ID: 7749902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The progression of idiopathic scoliosis after removal of Harrington instrumentation following spinal fusion.
    Padua S; Aulisa L; Fieri C
    Int Orthop; 1983; 7(2):85-9. PubMed ID: 6543825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical testing of posterior atlantoaxial fixation techniques.
    Melcher RP; Puttlitz CM; Kleinstueck FS; Lotz JC; Harms J; Bradford DS
    Spine (Phila Pa 1976); 2002 Nov; 27(22):2435-40. PubMed ID: 12435971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axial and tangential fixation strength of pedicle screws versus hooks in the thoracic spine in relation to bone mineral density.
    Hackenberg L; Link T; Liljenqvist U
    Spine (Phila Pa 1976); 2002 May; 27(9):937-42. PubMed ID: 11979165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term three-dimensional changes of the spine after posterior spinal instrumentation and fusion in adolescent idiopathic scoliosis.
    Papin P; Labelle H; Delorme S; Aubin CE; de Guise JA; Dansereau J
    Eur Spine J; 1999; 8(1):16-21. PubMed ID: 10190849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro stability of FRA spacers with integrated crossed screws for anterior lumbar interbody fusion.
    Kuzhupilly RR; Lieberman IH; McLain RF; Valdevit A; Kambic H; Richmond BJ
    Spine (Phila Pa 1976); 2002 May; 27(9):923-8. PubMed ID: 11979162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.