These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12221701)

  • 1. Surface engineering of poly(D,L-lactic acid) by entrapment of chitosan-based derivatives for the promotion of chondrogenesis.
    Zhu H; Ji J; Lin R; Gao C; Feng L; Shen J
    J Biomed Mater Res; 2002 Dec; 62(4):532-9. PubMed ID: 12221701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface engineering of poly(DL-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis.
    Zhu H; Ji J; Lin R; Gao C; Feng L; Shen J
    Biomaterials; 2002 Aug; 23(15):3141-8. PubMed ID: 12102185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface engineering of poly(D,L-lactic acid) by entrapment of soluble eggshell membrane protein.
    Lu JW; Li Q; Qi QL; Guo ZX; Yu J
    J Biomed Mater Res A; 2009 Dec; 91(3):701-7. PubMed ID: 19048638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules.
    Zhu H; Ji J; Tan Q; Barbosa MA; Shen J
    Biomacromolecules; 2003; 4(2):378-86. PubMed ID: 12625735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro.
    Cui YL; Qi AD; Liu WG; Wang XH; Wang H; Ma DM; Yao KD
    Biomaterials; 2003 Sep; 24(21):3859-68. PubMed ID: 12818559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility.
    Ma Z; Gao C; Gong Y; Ji J; Shen J
    J Biomed Mater Res; 2002; 63(6):838-47. PubMed ID: 12418032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility.
    Zhu H; Ji J; Shen J
    Biomaterials; 2004 Jan; 25(1):109-17. PubMed ID: 14580914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface tailoring of poly(DL-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth.
    Ji J; Zhu H; Shen J
    Biomaterials; 2004 May; 25(10):1859-67. PubMed ID: 14738850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytocompatibility of novel extracellular matrix protein analogs of biodegradable polyester polymers derived from α-hydroxy amino acids.
    Lecht S; Cohen-Arazi N; Cohen G; Ettinger K; Momic T; Kolitz M; Naamneh M; Katzhendler J; Domb AJ; Lazarovici P; Lelkes PI
    J Biomater Sci Polym Ed; 2014; 25(6):608-24. PubMed ID: 24568316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of poly (D,L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro.
    Cai K; Yao K; Cui Y; Lin S; Yang Z; Li X; Xie H; Qing T; Luo J
    J Biomed Mater Res; 2002 Jun; 60(3):398-404. PubMed ID: 11920663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of a brush-like copolymer of polylactide grafted onto chitosan.
    Liu Y; Tian F; Hu KA
    Carbohydr Res; 2004 Mar; 339(4):845-51. PubMed ID: 14980828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(D,L-lactic acid)-block-(ligand-tethered poly(ethylene glycol)) copolymers as surface additives for promoting chondrocyte attachment and growth.
    Yu G; Ji J; Zhu H; Shen J
    J Biomed Mater Res B Appl Biomater; 2006 Jan; 76(1):64-75. PubMed ID: 16130143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(L-lactic acid) porous scaffolds to enhance their chondrogenesis.
    Gong Y; Zhu Y; Liu Y; Ma Z; Gao C; Shen J
    Acta Biomater; 2007 Sep; 3(5):677-85. PubMed ID: 17576103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation of chondrocytes on porous poly(DL-lactide)/chitosan scaffolds.
    Wu H; Wan Y; Cao X; Wu Q
    Acta Biomater; 2008 Jan; 4(1):76-87. PubMed ID: 17986398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility.
    Liu Z; Jiao Y; Zhang Z; Zhou C
    J Biomed Mater Res A; 2007 Dec; 83(4):1110-1116. PubMed ID: 17584905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rat osteoblast functions on the o-carboxymethyl chitosan-modified poly(D,L-lactic acid) surface.
    Cai K; Yao K; Li Z; Yang Z; Li X
    J Biomater Sci Polym Ed; 2001; 12(12):1303-15. PubMed ID: 11922477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells.
    Ding Z; Chen J; Gao S; Chang J; Zhang J; Kang ET
    Biomaterials; 2004 Mar; 25(6):1059-67. PubMed ID: 14615171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface.
    Zhu A; Zhang M; Wu J; Shen J
    Biomaterials; 2002 Dec; 23(23):4657-65. PubMed ID: 12322987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation and biological evaluation of PLA/chitosan composite materials].
    Li L; Ding S; Zhou C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):398-400. PubMed ID: 14564997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application.
    Wongpanit P; Sanchavanakit N; Pavasant P; Supaphol P; Tokura S; Rujiravanit R
    Macromol Biosci; 2005 Oct; 5(10):1001-12. PubMed ID: 16208633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.