These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 12221708)
1. Preparation of calcium aluminate cement for hard tissue repair: effects of lithium fluoride and maleic acid on setting behavior, compressive strength, and biocompatibility. Oh SH; Choi SY; Lee YK; Kim KN J Biomed Mater Res; 2002 Dec; 62(4):593-9. PubMed ID: 12221708 [TBL] [Abstract][Full Text] [Related]
2. Effects of lithium fluoride and maleic acid on the bioactivity of calcium aluminate cement: Formation of hydroxyapatite in simulated body fluid. Oh SH; Choi SY; Lee YK; Kim KN; Choi SH J Biomed Mater Res A; 2003 Oct; 67(1):104-11. PubMed ID: 14517867 [TBL] [Abstract][Full Text] [Related]
3. The influence of lithium fluoride on in vitro biocompatibility and bioactivity of calcium aluminate-pMMA composite cement. Oh SH; Choi SY; Choi SH; Lee YK; Kim KN J Mater Sci Mater Med; 2004 Jan; 15(1):25-33. PubMed ID: 15338588 [TBL] [Abstract][Full Text] [Related]
4. In vitro bioactivity and biocompatibility of dicalcium silicate cements for endodontic use. Chen CC; Ho CC; David Chen CH; Wang WC; Ding SJ J Endod; 2009 Nov; 35(11):1554-7. PubMed ID: 19840646 [TBL] [Abstract][Full Text] [Related]
5. Development of LiCl-containing calcium aluminate cement for bone repair and remodeling applications. Acuña-Gutiérrez IO; Escobedo-Bocardo JC; Almanza-Robles JM; Cortés-Hernández DA; Saldívar-Ramírez MM; Reséndiz-Hernández PJ; Zugasti-Cruz A Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):357-363. PubMed ID: 27770903 [TBL] [Abstract][Full Text] [Related]
6. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty. Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693 [TBL] [Abstract][Full Text] [Related]
7. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194 [TBL] [Abstract][Full Text] [Related]
8. Development of a strontium-containing hydroxyapatite bone cement. Guo D; Xu K; Zhao X; Han Y Biomaterials; 2005 Jul; 26(19):4073-83. PubMed ID: 15664634 [TBL] [Abstract][Full Text] [Related]
9. Setting properties and biocompatibility of dicalcium silicate with varying additions of tricalcium aluminate. Liu W; Chang J J Biomater Appl; 2012 Aug; 27(2):171-8. PubMed ID: 21527494 [TBL] [Abstract][Full Text] [Related]
10. The constitution, physical properties and biocompatibility of modified accelerated cement. Camilleri J; Montesin FE; Juszczyk AS; Papaioannou S; Curtis RV; Donald FM; Ford TR Dent Mater; 2008 Mar; 24(3):341-50. PubMed ID: 17659330 [TBL] [Abstract][Full Text] [Related]
11. [Preparation and properties of calcium silicate-phosphate composite bone cements]. Wang Z; Hu J; Liu X; Chen X; Lü B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):121-4. PubMed ID: 16532825 [TBL] [Abstract][Full Text] [Related]
12. Solidification/stabilization of toxic metals in calcium aluminate cement matrices. Navarro-Blasco I; Duran A; Sirera R; Fernández JM; Alvarez JI J Hazard Mater; 2013 Sep; 260():89-103. PubMed ID: 23747467 [TBL] [Abstract][Full Text] [Related]
13. Fiber-enriched double-setting calcium phosphate bone cement. dos Santos LA; Carrodéguas RG; Boschi AO; Fonseca de Arruda AC J Biomed Mater Res A; 2003 May; 65(2):244-50. PubMed ID: 12734819 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Portland cement for use as a dental restorative material. Camilleri J; Montesin FE; Curtis RV; Ford TR Dent Mater; 2006 Jun; 22(6):569-75. PubMed ID: 16221489 [TBL] [Abstract][Full Text] [Related]
15. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]
16. Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements. Combes C; Miao B; Bareille R; Rey C Biomaterials; 2006 Mar; 27(9):1945-54. PubMed ID: 16219345 [TBL] [Abstract][Full Text] [Related]
17. [Physical properties of apatite bone cement]. Chen D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Mar; 17(1):13-5, 18. PubMed ID: 10879182 [TBL] [Abstract][Full Text] [Related]
18. The self-setting properties and in vitro bioactivity of tricalcium silicate. Zhao W; Wang J; Zhai W; Wang Z; Chang J Biomaterials; 2005 Nov; 26(31):6113-21. PubMed ID: 15927252 [TBL] [Abstract][Full Text] [Related]
19. α-Tricalcium phosphate cements modified with β-dicalcium silicate and tricalcium aluminate: physicochemical characterization, in vitro bioactivity and cytotoxicity. Correa D; Almirall A; Carrodeguas RG; dos Santos LA; De Aza AH; Parra J; Morejón L; Delgado JA J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):72-83. PubMed ID: 24764271 [TBL] [Abstract][Full Text] [Related]
20. Effects of dodecacalcium hepta-aluminate content on the setting time, compressive strength, alkalinity, and cytocompatibility of tricalcium silicate cement. Choi Y; Bae JL; Kim HJ; Yu MK; Lee KW; Min KS J Appl Oral Sci; 2019 Jan; 27():e20180247. PubMed ID: 30624470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]