These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12222122)

  • 21. Ultrasonic and elasticity imaging to model disease-induced changes in soft-tissue structure.
    Chaturvedi P; Insana MF; Hall TJ
    Med Image Anal; 1998 Dec; 2(4):325-38. PubMed ID: 10072200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A three-dimensional finite element model for arterial clamping.
    Gasser TC; Schulze-Bauer CA; Holzapfel GA
    J Biomech Eng; 2002 Aug; 124(4):355-63. PubMed ID: 12188202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carotid Artery Stiffness Assessment by Ultrafast Ultrasound Imaging: Feasibility and Potential Influencing Factors.
    Pan FS; Yu L; Luo J; Wu RD; Xu M; Liang JY; Zheng YL; Xie XY
    J Ultrasound Med; 2018 Dec; 37(12):2759-2767. PubMed ID: 29672890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.
    Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elimination of the friction effects in unconfined compression tests of biomaterials and soft tissues.
    Wu JZ; Dong RG; Smutz WP
    Proc Inst Mech Eng H; 2004; 218(1):35-40. PubMed ID: 14982344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Development of the ultrasonic characterization of biological tissue elasticity].
    Liu Z; Wang M; Lü Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):207-10. PubMed ID: 15762151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elasticity reconstruction from displacement and confidence measures of a multi-compressed ultrasound RF sequence.
    Li J; Cui Y; Kadour M; Noble JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):319-26. PubMed ID: 18334339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct measurement of wall stiffness for carotid arteries by ultrasound strain imaging.
    Kawasaki T; Fukuda S; Shimada K; Maeda K; Yoshida K; Sunada H; Inanami H; Tanaka H; Jissho S; Taguchi H; Yoshiyama M; Yoshikawa J
    J Am Soc Echocardiogr; 2009 Dec; 22(12):1389-95. PubMed ID: 19880276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of carotid plaque vulnerability using structural and geometrical determinants.
    Li ZY; Tang T; U-King-Im J; Graves M; Sutcliffe M; Gillard JH
    Circ J; 2008 Jul; 72(7):1092-9. PubMed ID: 18577817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new finite element method for inverse problems in structural analysis: application to atherosclerotic plaque elasticity reconstruction.
    Bouvier A; Deleaval F; Doyley MM; Tacheau A; Finet G; Le Floc'h S; Cloutier G; Pettigrew RI; Ohayon J
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():16-7. PubMed ID: 25074142
    [No Abstract]   [Full Text] [Related]  

  • 31. On the potential of the lagrangian estimator for endovascular ultrasound elastography: in vivo human coronary artery study.
    Maurice RL; Fromageau J; Brusseau E; Finet G; Rioufol G; Cloutier G
    Ultrasound Med Biol; 2007 Aug; 33(8):1199-205. PubMed ID: 17466446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local elasticity imaging of vulnerable atherosclerotic coronary plaques.
    Baldewsing RA; Schaar JA; Mastik F; van der Steen AFW
    Adv Cardiol; 2007; 44():35-61. PubMed ID: 17075198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A quantitative comparison of modulus images obtained using nanoindentation with strain elastograms.
    Srinivasan S; Krouskop T; Ophir J
    Ultrasound Med Biol; 2004 Jul; 30(7):899-918. PubMed ID: 15313323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain measurement in biaxially loaded inhomogeneous, anisotropic elastic membranes.
    Malcolm DT; Nielsen PM; Hunter PJ; Charette PG
    Biomech Model Mechanobiol; 2002 Dec; 1(3):197-210. PubMed ID: 14586699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue strain imaging using a wavelet transform-based peak search algorithm.
    Eskandari H; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1118-30. PubMed ID: 17571811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation.
    Nguyen TM; Couade M; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2305-15. PubMed ID: 22083764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of internal stress concentrations in plantar soft-tissue--A preliminary three-dimensional finite element analysis.
    Chen WM; Lee T; Lee PV; Lee JW; Lee SJ
    Med Eng Phys; 2010 May; 32(4):324-31. PubMed ID: 20117957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An information-based machine learning approach to elasticity imaging.
    Hoerig C; Ghaboussi J; Insana MF
    Biomech Model Mechanobiol; 2017 Jun; 16(3):805-822. PubMed ID: 27858175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virtualisation of stress distribution in heart valve tissue.
    Huang S; Huang HY
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1696-704. PubMed ID: 23477432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.