BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 12222818)

  • 1. Comparison of semi-automatic and automatic data acquisition methods for studying three-dimensional distributions of large neuronal populations and axonal plexuses.
    Lillehaug S; Oyan D; Leergaard TB; Bjaalie JG
    Network; 2002 Aug; 13(3):343-56. PubMed ID: 12222818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-automatic data acquisition for quantitative neuroanatomy. MicroTrace--computer programme for recording of the spatial distribution of neuronal populations.
    Leergaard TB; Bjaalie JG
    Neurosci Res; 1995 May; 22(2):231-43. PubMed ID: 7566704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks.
    Cai H; Xu X; Lu J; Lichtman JW; Yung SP; Wong ST
    Neuroimage; 2006 Oct; 32(4):1608-20. PubMed ID: 16861006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated axon length quantification for populations of labelled neurons.
    Broser PJ; Erdogan S; Grinevich V; Osten P; Sakmann B; Wallace DJ
    J Neurosci Methods; 2008 Mar; 169(1):43-54. PubMed ID: 18206246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing tools to resolve neural circuits.
    Wouterlood FG; Vinkenoog M; van den Oever M
    Network; 2002 Aug; 13(3):327-42. PubMed ID: 12222817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput morphometric analysis of individual neurons.
    Wu CC; Reilly JF; Young WG; Morrison JH; Bloom FE
    Cereb Cortex; 2004 May; 14(5):543-54. PubMed ID: 15054070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in functional neuroanatomy: precise automatic geometric reconstruction of neuronal morphology from confocal image stacks.
    Evers JF; Schmitt S; Sibila M; Duch C
    J Neurophysiol; 2005 Apr; 93(4):2331-42. PubMed ID: 15537815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reevaluation of the primary motor cortex connections with the thalamus in primates.
    Kultas-Ilinsky K; Sivan-Loukianova E; Ilinsky IA
    J Comp Neurol; 2003 Mar; 457(2):133-58. PubMed ID: 12541315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and topography of nucleus ambiguus projections to cardiac ganglia in rats and mice.
    Ai J; Epstein PN; Gozal D; Yang B; Wurster R; Cheng ZJ
    Neuroscience; 2007 Nov; 149(4):845-60. PubMed ID: 17942236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays.
    Du J; Riedel-Kruse IH; Nawroth JC; Roukes ML; Laurent G; Masmanidis SC
    J Neurophysiol; 2009 Mar; 101(3):1671-8. PubMed ID: 19091921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for imaging and 3D reconstruction of mammalian cochlea by fluorescent confocal microscopy.
    Hardie NA; MacDonald G; Rubel EW
    Brain Res; 2004 Mar; 1000(1-2):200-10. PubMed ID: 15053969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction and quantitative analysis of the brain stem nuclei based on fast centroid auto-registration.
    Chen YC; Hu KH; Li FZ; Su WF; Zhang BL
    Biomed Mater Eng; 2006; 16(1):67-75. PubMed ID: 16410645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pregnant women: Moiré contourgraph and it's semiautomatic and automatic evaluation. Dedicated to Professor Antonín Dolezal on his 75th birthday anniversary.
    Jelen K; Kusová S
    Neuro Endocrinol Lett; 2004; 25(1-2):52-6. PubMed ID: 15159683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excimer laser channel creation in polyethersulfone hollow fibers for compartmentalized in vitro neuronal cell culture scaffolds.
    Brayfield CA; Marra KG; Leonard JP; Tracy Cui X; Gerlach JC
    Acta Biomater; 2008 Mar; 4(2):244-55. PubMed ID: 18060849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated high-resolution three-dimensional fluorescence imaging of large biological specimens.
    Kazakia GJ; Lee JJ; Singh M; Bigley RF; Martin RB; Keaveny TM
    J Microsc; 2007 Feb; 225(Pt 2):109-17. PubMed ID: 17359245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic real-time three-dimensional cell tracking by fluorescence microscopy.
    Rabut G; Ellenberg J
    J Microsc; 2004 Nov; 216(Pt 2):131-7. PubMed ID: 15516224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal AII amacrine cells imaged with multi-photon excitation microscopy.
    Zandt BJ; Losnegård A; Hodneland E; Veruki ML; Lundervold A; Hartveit E
    J Neurosci Methods; 2017 Mar; 279():101-118. PubMed ID: 28115187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats.
    Salinas-Navarro M; Mayor-Torroglosa S; Jiménez-López M; Avilés-Trigueros M; Holmes TM; Lund RD; Villegas-Pérez MP; Vidal-Sanz M
    Vision Res; 2009 Jan; 49(1):115-26. PubMed ID: 18952118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for the automatic segmentation of autoradiographic image stacks and spatial normalization of functional cortical activity patterns.
    Mohr J; Hess A; Scholz M; Obermayer K
    J Neurosci Methods; 2004 Mar; 134(1):45-58. PubMed ID: 15102502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization, reconstruction, and integration of neuronal structures in digital brain atlases.
    Maye A; Wenckebach TH; Hege HC
    Int J Neurosci; 2006 Apr; 116(4):431-59. PubMed ID: 16574581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.