BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12223089)

  • 1. Effects of oxygen on the dark recombination between photoreduced secondary quinone and oxidized bacteriochlorophyll in Rhodobacter sphaeroides reaction centers.
    Knox PP; Lukashev EP; Timofeev KN; Seifullina NK
    Biochemistry (Mosc); 2002 Aug; 67(8):901-7. PubMed ID: 12223089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of oxygen on temporary stabilization of photoreduced quinone acceptors in Rhodobacter sphaeroides reaction centers.
    Knox PP; Heinnickel M; Rubin AB
    Biochemistry (Mosc); 2004 Mar; 69(3):281-4. PubMed ID: 15061694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporary stabilization of electron on quinone acceptor side of reaction centers from the bacterium Rhodobacter sphaeroides wild type and mutant SA(L223) depending on duration of light activation.
    Knox PP; Zakharova NI; Seifullina NH; Churbanova IY; Mamedov MD; Semenov AY
    Biochemistry (Mosc); 2004 Aug; 69(8):890-6. PubMed ID: 15377269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of isotope substitution and controlled dehydration on the photoinduced electron transport reactions of quinone acceptors and multiheme cytochrome C in bacterial photosynthetic reaction center.
    Chamorovsky SK; Krasil'nikov PM; Knox PP
    Biochemistry (Mosc); 2002 Nov; 67(11):1298-306. PubMed ID: 12495430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation processes accompanying electron stabilization in the quinone acceptor part of Rb. sphaeroides reaction centers.
    Knox PP; Lukashev EP; Gorokhov VV; Seifullina NK; Paschenko VZ
    J Photochem Photobiol B; 2018 Dec; 189():145-151. PubMed ID: 30347352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dipyridamole on the recombination kinetics between photooxidized bacteriochlorophyll and photoreduced primary quinone in reaction centres of purple bacteria.
    Knox PP; Churbanova IJ; Lukashev EP; Borissevitch GP; Zakharova NI; Tabak M
    Membr Cell Biol; 2000; 14(1):37-45. PubMed ID: 11051080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of relaxation processes on the temperature dependence of oxidation rate of photooxidized bacteriochlorophyll on the primary quinone in reaction centers of Rhodobacter sphaeroides].
    Krasil'nikov PM; Noks PP; Pashchenko VZ; Renger G; Rubin AB
    Biofizika; 2002; 47(3):474-81. PubMed ID: 12068604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A network of hydrogen bonds in the reaction centers of Rhodobacter sphaeroides serves as a regulatory factor of the temperature dependence of the recombination rate constant of photooxidized bacteriochlorophyll and primary quinone acceptors].
    Krasil'nikov PM; Bashtovyĭ D; Knox PP; Pashchenko VZ
    Biofizika; 2004; 49(5):822-8. PubMed ID: 15526466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton and electron transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers: characterization of site-directed mutants of the two ionizable residues, GluL212 and AspL213, in the QB binding site.
    Takahashi E; Wraight CA
    Biochemistry; 1992 Jan; 31(3):855-66. PubMed ID: 1731944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of the recombination reaction between photooxidized bacteriochlorophyll and reduced primary quinone in reaction centers of Rhodobacter sphaeroides at T > 300 K.
    Krasil'nikov PM; Noks PP; Lukashev EP; Pashchenko VZ; Churbanova IY; Shaitan KV; Rubin AB
    Dokl Biophys; 2000; 373-375():61-3. PubMed ID: 11216460
    [No Abstract]   [Full Text] [Related]  

  • 11. Quinone (QB) reduction by B-branch electron transfer in mutant bacterial reaction centers from Rhodobacter sphaeroides: quantum efficiency and X-ray structure.
    Paddock ML; Chang C; Xu Q; Abresch EC; Axelrod HL; Feher G; Okamura MY
    Biochemistry; 2005 May; 44(18):6920-8. PubMed ID: 15865437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipyridamole and its derivatives modify the kinetics of the electron transport in reaction centers from Rhodobacter sphaeroides.
    Knox PP; Churbanova IY; Lukashev EP; Zakharova NI; Rubin AB; Borissevitc GP
    J Photochem Photobiol B; 2000 Jun; 56(1):68-77. PubMed ID: 11073318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).
    Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR
    Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-nuclear and electron-electron double resonance spectroscopies show that the primary quinone acceptor QA in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides remains in the same orientation upon light-induced reduction.
    Flores M; Savitsky A; Paddock ML; Abresch EC; Dubinskii AA; Okamura MY; Lubitz W; Möbius K
    J Phys Chem B; 2010 Dec; 114(50):16894-901. PubMed ID: 21090818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of light and temperature on the dynamic state of Rhodobacter sphaeroides reaction centers proteins determined from changes in tryptophan fluorescence lifetime and P
    Knox PP; Gorokhov VV; Korvatovskiy BN; Lukashev EP; Goryachev SN; Paschenko VZ; Rubin AB
    J Photochem Photobiol B; 2018 Mar; 180():140-148. PubMed ID: 29413697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytin.
    Kirmaier C; Gaul D; DeBey R; Holten D; Schenck CC
    Science; 1991 Feb; 251(4996):922-7. PubMed ID: 2000491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light- and redox-dependent thermal stability of the reaction center of the photosynthetic Bacterium rhodobacter sphaeroides.
    Tokaji Z; Tandori J; Maróti P
    Photochem Photobiol; 2002 Jun; 75(6):605-12. PubMed ID: 12081322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-harvesting complex 1 stabilizes P+QB- charge separation in reaction centers of Rhodobacter sphaeroides.
    Francia F; Dezi M; Rebecchi A; Mallardi A; Palazzo G; Melandri BA; Venturoli G
    Biochemistry; 2004 Nov; 43(44):14199-210. PubMed ID: 15518570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides.
    Williams JC; Alden RG; Murchison HA; Peloquin JM; Woodbury NW; Allen JP
    Biochemistry; 1992 Nov; 31(45):11029-37. PubMed ID: 1445841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of wild type and genetically modified reaction centers from Rhodobacter capsulatus: structural comparison with Rhodopseudomonas viridis and Rhodobacter sphaeroides.
    Baciou L; Bylina EJ; Sebban P
    Biophys J; 1993 Aug; 65(2):652-60. PubMed ID: 8218894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.