BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12223216)

  • 81. Analysis of the interaction of small heat shock proteins with unfolding proteins.
    Stromer T; Ehrnsperger M; Gaestel M; Buchner J
    J Biol Chem; 2003 May; 278(20):18015-21. PubMed ID: 12637495
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea.
    Lee GJ; Pokala N; Vierling E
    J Biol Chem; 1995 May; 270(18):10432-8. PubMed ID: 7737977
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The microtubule-associated protein, NUD-1, exhibits chaperone activity in vitro.
    Faircloth LM; Churchill PF; Caldwell GA; Caldwell KA
    Cell Stress Chaperones; 2009 Jan; 14(1):95-103. PubMed ID: 18626791
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Heat shock protein gene expression during Xenopus development.
    Heikkila JJ; Ohan N; Tam Y; Ali A
    Cell Mol Life Sci; 1997 Jan; 53(1):114-21. PubMed ID: 9117991
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins.
    Stromer T; Fischer E; Richter K; Haslbeck M; Buchner J
    J Biol Chem; 2004 Mar; 279(12):11222-8. PubMed ID: 14722093
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Small heat shock proteins in the amphibian Pelophylax bergeri: Cloning and characterization of Hsp27 and Hsp30 cDNAs and their expression analysis in ex vivo skin exposed to abiotic stresses.
    Simoncelli F; Lucentini L; La Porta G; Belia S; Di Rosa I; Fagotti A
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():90-101. PubMed ID: 31146021
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The developmental expression of the heat-shock response in Xenopus laevis.
    Davis RE; King ML
    Development; 1989 Feb; 105(2):213-22. PubMed ID: 2806121
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo.
    Löw D; Brändle K; Nover L; Forreiter C
    Planta; 2000 Sep; 211(4):575-82. PubMed ID: 11030557
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria.
    Kobayashi H; Yoshida T; Miyakawa T; Tashiro M; Okamoto K; Yamanaka H; Tanokura M; Tsuge H
    J Biol Chem; 2015 Apr; 290(17):11130-43. PubMed ID: 25784551
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Chaperone-like function of lipocortin 1.
    Kim GY; Lee HB; Lee SO; Rhee HJ; Na DS
    Biochem Mol Biol Int; 1997 Oct; 43(3):521-8. PubMed ID: 9352070
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fibrinogen has chaperone-like activity.
    Tang H; Fu Y; Cui Y; He Y; Zeng X; Ploplis VA; Castellino FJ; Luo Y
    Biochem Biophys Res Commun; 2009 Jan; 378(3):662-7. PubMed ID: 19059206
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Chaperone function of sHsps.
    Haslbeck M; Buchner J
    Prog Mol Subcell Biol; 2002; 28():37-59. PubMed ID: 11908065
    [No Abstract]   [Full Text] [Related]  

  • 93. Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins.
    McHaourab HS; Godar JA; Stewart PL
    Biochemistry; 2009 May; 48(18):3828-37. PubMed ID: 19323523
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Regulation of Saccharomyces cerevisiae Plasma membrane H(+)-ATPase (Pma1) by Dextrose and Hsp30 during Exposure to Thermal Stress.
    Meena RC; Thakur S; Chakrabarti A
    Indian J Microbiol; 2011 Jun; 51(2):153-8. PubMed ID: 22654157
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Discovery of two distinct small heat shock protein (HSP) families in the desert fish Poeciliopsis.
    Norris CE; Hightower LE
    Prog Mol Subcell Biol; 2002; 28():19-35. PubMed ID: 11908060
    [No Abstract]   [Full Text] [Related]  

  • 96. HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C.
    Collier MP; Alderson TR; de Villiers CP; Nicholls D; Gastall HY; Allison TM; Degiacomi MT; Jiang H; Mlynek G; Fürst DO; van der Ven PFM; Djinovic-Carugo K; Baldwin AJ; Watkins H; Gehmlich K; Benesch JLP
    Sci Adv; 2019 May; 5(5):eaav8421. PubMed ID: 31131323
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Structure of the 70-kilodalton heat-shock-related proteins.
    McKay DB
    Springer Semin Immunopathol; 1991; 13(1):1-9. PubMed ID: 1776119
    [No Abstract]   [Full Text] [Related]  

  • 98. De Novo Design, Synthesis, and Mechanistic Evaluation of Short Peptides That Mimic Heat Shock Protein 27 Activity.
    Kho J; Pham PC; Kwon S; Huang AY; Rivers JP; Wang H; Ecroyd H; Donald WA; McAlpine SR
    ACS Med Chem Lett; 2021 May; 12(5):713-719. PubMed ID: 34055216
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The Effect of N-Terminal Domain Removal towards the Biochemical and Structural Features of a Thermotolerant Lipase from an Antarctic Pseudomonas sp. Strain AMS3.
    Latip W; Raja Abd Rahman RNZ; Leow ATC; Mohd Shariff F; Kamarudin NHA; Mohamad Ali MS
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29438291
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease.
    Geuens T; De Winter V; Rajan N; Achsel T; Mateiu L; Almeida-Souza L; Asselbergh B; Bouhy D; Auer-Grumbach M; Bagni C; Timmerman V
    Acta Neuropathol Commun; 2017 Jan; 5(1):5. PubMed ID: 28077174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.