These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12223290)

  • 1. Checkerboard DNA-DNA hybridisation technology focused on the analysis of Gram-positive cariogenic bacteria.
    Wall-Manning GM; Sissons CH; Anderson SA; Lee M
    J Microbiol Methods; 2002 Nov; 51(3):301-11. PubMed ID: 12223290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Checkerboard DNA-DNA hybridization technology using digoxigenin detection.
    Gellen LS; Wall-Manning GM; Sissons CH
    Methods Mol Biol; 2007; 353():39-67. PubMed ID: 17332632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supragingival plaque microbial analysis in reflection to caries experience.
    Mannaa A; Carlén A; Campus G; Lingström P
    BMC Oral Health; 2013 Jan; 13():5. PubMed ID: 23298235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-familial comparison of supragingival dental plaque microflora using the checkerboard DNA-DNA hybridisation technique.
    Mannaa A; Carlén A; Dahlén G; Lingström P
    Arch Oral Biol; 2012 Dec; 57(12):1644-50. PubMed ID: 22831865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic profiling of the oral microbiota associated with severe early-childhood caries.
    Li Y; Ge Y; Saxena D; Caufield PW
    J Clin Microbiol; 2007 Jan; 45(1):81-7. PubMed ID: 17079495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microbiological profiles of saliva, supragingival and subgingival plaque and dental caries in adults with and without type 2 diabetes mellitus.
    Hintao J; Teanpaisan R; Chongsuvivatwong V; Ratarasan C; Dahlen G
    Oral Microbiol Immunol; 2007 Jun; 22(3):175-81. PubMed ID: 17488443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Checkerboard" versus culture: a comparison between two methods for identification of subgingival microbiota.
    Papapanou PN; Madianos PN; Dahlén G; Sandros J
    Eur J Oral Sci; 1997 Oct; 105(5 Pt 1):389-96. PubMed ID: 9395099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The prevalence of Candida albicans and its relationship with early childhood caries among children of Uygur and Han nationalities in Kashi city].
    Zhang W; Lian B; Zhao J
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 May; 51(5):269-74. PubMed ID: 27220384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. spaP gene of Streptococcus mutans in dental plaque and its relationship with early childhood caries.
    Durán-Contreras GL; Torre-Martínez HH; de la Rosa EI; Hernández RM; de la Garza Ramos M
    Eur J Paediatr Dent; 2011 Dec; 12(4):220-4. PubMed ID: 22185244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple displacement amplification as an aid in checkerboard DNA-DNA hybridization.
    Teles F; Haffajee AD; Socransky SS
    Oral Microbiol Immunol; 2007 Apr; 22(2):118-25. PubMed ID: 17311635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiology in toothbrush samples from children exposed to lead in southern Thailand.
    Youravong N; Teanpaisan R; Chongsuvivatwong V; Geater AF; Dahlén G
    Acta Odontol Scand; 2007 Feb; 65(1):22-8. PubMed ID: 17354091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of checkerboard DNA-DNA hybridization to study complex microbial ecosystems.
    Socransky SS; Haffajee AD; Smith C; Martin L; Haffajee JA; Uzel NG; Goodson JM
    Oral Microbiol Immunol; 2004 Dec; 19(6):352-62. PubMed ID: 15491460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the DNA Checkerboard hybridization method for detection and quantitation of Candida species in oral microbiota.
    do Nascimento C; Ferreira de Albuquerque Junior R; Issa JP; Ito IY; Lovato da Silva CH; de Freitas Oliveira Paranhos H; de Souza RF
    Can J Microbiol; 2009 May; 55(5):622-6. PubMed ID: 19483792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streptococcus mutans, Streptococcus sobrinus and Candida albicans in oral samples from caries-free and caries-active children.
    Fragkou S; Balasouli C; Tsuzukibashi O; Argyropoulou A; Menexes G; Kotsanos N; Kalfas S
    Eur Arch Paediatr Dent; 2016 Oct; 17(5):367-375. PubMed ID: 27357362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence of Candida albicans and Candida dubliniensis in caries-free and caries-active children in relation to the oral microbiota-a clinical study.
    Al-Ahmad A; Auschill TM; Dakhel R; Wittmer A; Pelz K; Heumann C; Hellwig E; Arweiler NB
    Clin Oral Investig; 2016 Nov; 20(8):1963-1971. PubMed ID: 26696116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of oral Actinomyces species using DNA probes.
    Ximénez-Fyvie LA; Haffajee AD; Martin L; Tanner A; Macuch P; Socransky SS
    Oral Microbiol Immunol; 1999 Aug; 14(4):257-65. PubMed ID: 10551171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Genetic Factors in the Outbreak Mechanism of Dental Caries.
    Shimomura-Kuroki J; Nashida T; Miyagawa Y; Sekimoto T
    J Clin Pediatr Dent; 2018; 42(1):32-36. PubMed ID: 28937897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caries-related plaque microcosm biofilms developed in microplates.
    Filoche SK; Soma KJ; Sissons CH
    Oral Microbiol Immunol; 2007 Apr; 22(2):73-9. PubMed ID: 17311629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast-specific DNA probes and their application for the detection of Candida albicans.
    Holmes AR; Lee YC; Cannon RD; Jenkinson HF; Shepherd MG
    J Med Microbiol; 1992 Nov; 37(5):346-51. PubMed ID: 1433257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of selected cariogenic bacteria in five different intra-oral habitats in young children.
    Gizani S; Papaioannou W; Haffajee AD; Kavvadia K; Quirynen M; Papagiannoulis L
    Int J Paediatr Dent; 2009 May; 19(3):193-200. PubMed ID: 19207737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.