These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 12223562)

  • 1. Dark rearing alters the development of GABAergic transmission in visual cortex.
    Morales B; Choi SY; Kirkwood A
    J Neurosci; 2002 Sep; 22(18):8084-90. PubMed ID: 12223562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laminar-specific maturation of GABAergic transmission and susceptibility to visual deprivation are related to endocannabinoid sensitivity in mouse visual cortex.
    Jiang B; Sohya K; Sarihi A; Yanagawa Y; Tsumoto T
    J Neurosci; 2010 Oct; 30(42):14261-72. PubMed ID: 20962247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental inhibitory gate controls the relay of activity to the superficial layers of the visual cortex.
    Rozas C; Frank H; Heynen AJ; Morales B; Bear MF; Kirkwood A
    J Neurosci; 2001 Sep; 21(17):6791-801. PubMed ID: 11517267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in binocularity and ocular dominance plasticity between GABAergic and excitatory cortical neurons.
    Kameyama K; Sohya K; Ebina T; Fukuda A; Yanagawa Y; Tsumoto T
    J Neurosci; 2010 Jan; 30(4):1551-9. PubMed ID: 20107082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influences of dark rearing on the transmission characteristics of layer II/III pyramidal cells during the critical period.
    Liu Y; Shi X; Li Y; Zhao K
    Brain Res; 2012 May; 1457():26-32. PubMed ID: 22534484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark rearing alters the short-term synaptic plasticity in visual cortex.
    Tang AH; Chai Z; Wang SQ
    Neurosci Lett; 2007 Jul; 422(1):49-53. PubMed ID: 17630207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex.
    Yoshimura Y; Ohmura T; Komatsu Y
    J Neurosci; 2003 Jul; 23(16):6557-66. PubMed ID: 12878697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of GABAergic transmission and the timing of plasticity in visual cortex.
    Jiang B; Huang ZJ; Morales B; Kirkwood A
    Brain Res Brain Res Rev; 2005 Dec; 50(1):126-33. PubMed ID: 16024085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical periods for experience-dependent synaptic scaling in visual cortex.
    Desai NS; Cudmore RH; Nelson SB; Turrigiano GG
    Nat Neurosci; 2002 Aug; 5(8):783-9. PubMed ID: 12080341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex.
    Petrus E; Anguh TT; Pho H; Lee A; Gammon N; Lee HK
    J Neurophysiol; 2011 Nov; 106(5):2499-505. PubMed ID: 21813745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period.
    Chattopadhyaya B; Di Cristo G; Higashiyama H; Knott GW; Kuhlman SJ; Welker E; Huang ZJ
    J Neurosci; 2004 Oct; 24(43):9598-611. PubMed ID: 15509747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid critical period induction by tonic inhibition in visual cortex.
    Iwai Y; Fagiolini M; Obata K; Hensch TK
    J Neurosci; 2003 Jul; 23(17):6695-702. PubMed ID: 12890762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience-dependent switch in sign and mechanisms for plasticity in layer 4 of primary visual cortex.
    Wang L; Fontanini A; Maffei A
    J Neurosci; 2012 Aug; 32(31):10562-73. PubMed ID: 22855806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex.
    Philpot BD; Sekhar AK; Shouval HZ; Bear MF
    Neuron; 2001 Jan; 29(1):157-69. PubMed ID: 11182088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effect of dark rearing on long-term potentiation induced by layer IV and white matter stimulation in rat visual cortex.
    Salami M; Fathollahi Y; Semnanian S; Atapour N
    Neurosci Res; 2000 Dec; 38(4):349-56. PubMed ID: 11164561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A refractory period for rejuvenating GABAergic synaptic transmission and ocular dominance plasticity with dark exposure.
    Huang S; Gu Y; Quinlan EM; Kirkwood A
    J Neurosci; 2010 Dec; 30(49):16636-42. PubMed ID: 21148002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal influences induce bidirectional changes in the kinetics of N-methyl-D-aspartate receptor-mediated responses in striate cortex cells during postnatal development.
    Olavarria JF; van Brederode JF; Spain WJ
    Neuroscience; 2007 Sep; 148(3):683-99. PubMed ID: 17706364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental enrichment prevents effects of dark-rearing in the rat visual cortex.
    Bartoletti A; Medini P; Berardi N; Maffei L
    Nat Neurosci; 2004 Mar; 7(3):215-6. PubMed ID: 14966527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired GABAergic inhibition in the visual cortex of brain-derived neurotrophic factor heterozygous knockout mice.
    Abidin I; Eysel UT; Lessmann V; Mittmann T
    J Physiol; 2008 Apr; 586(7):1885-901. PubMed ID: 18238806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.