These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 12223673)
1. RNase Activity Decreases following a Heat Shock in Wheat Leaves and Correlates with Its Posttranslational Modification. Chang SC; Gallie DR Plant Physiol; 1997 Apr; 113(4):1253-1263. PubMed ID: 12223673 [TBL] [Abstract][Full Text] [Related]
2. Translational control during recovery from heat shock in the absence of heat shock proteins. Gallie DR; Pitto L Biochem Biophys Res Commun; 1996 Oct; 227(2):462-7. PubMed ID: 8878537 [TBL] [Abstract][Full Text] [Related]
3. Temperature-sensitive mRNA degradation is an early event in hepatocyte de-differentiation. Wang XJ; Hodgkinson CP; Wright MC; Paine AJ Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):937-44. PubMed ID: 9396741 [TBL] [Abstract][Full Text] [Related]
4. Differential expression of hsp70 stress proteins in human endothelial cells exposed to heat shock and hydrogen peroxide. Jornot L; Mirault ME; Junod AF Am J Respir Cell Mol Biol; 1991 Sep; 5(3):265-75. PubMed ID: 1910812 [TBL] [Abstract][Full Text] [Related]
5. Heat Shock Disrupts Cap and Poly(A) Tail Function during Translation and Increases mRNA Stability of Introduced Reporter mRNA. Gallie DR; Caldwell C; Pitto L Plant Physiol; 1995 Aug; 108(4):1703-1713. PubMed ID: 12228574 [TBL] [Abstract][Full Text] [Related]
6. Heat shock dependent fluctuations of RNase activity during the cell cycle of synchronized Tetrahymena. Tarnowka MA; Yuyama S J Cell Physiol; 1978 Apr; 95(1):85-93. PubMed ID: 417088 [TBL] [Abstract][Full Text] [Related]
7. Use of polymerase chain reaction to detect the expression of the Mr 70,000 heat shock genes in control or heat shock leukemic cells as correlated to their heat response. Mivechi NF; Rossi JJ Cancer Res; 1990 May; 50(10):2877-84. PubMed ID: 2334891 [TBL] [Abstract][Full Text] [Related]
8. Tissue-specific posttranslational modification of the small heat shock protein HSP27 in Drosophila. Marin R; Landry J; Tanguay RM Exp Cell Res; 1996 Feb; 223(1):1-8. PubMed ID: 8635480 [TBL] [Abstract][Full Text] [Related]
9. Developmental and thermal regulation of the maize heat shock protein, HSP101. Young TE; Ling J; Geisler-Lee CJ; Tanguay RL; Caldwell C; Gallie DR Plant Physiol; 2001 Nov; 127(3):777-91. PubMed ID: 11706162 [TBL] [Abstract][Full Text] [Related]
10. Three RNases in Senescent and Nonsenescent Wheat Leaves : Characterization by Activity Staining in Sodium Dodecyl Sulfate-Polyacrylamide Gels. Blank A; McKeon TA Plant Physiol; 1991 Dec; 97(4):1402-8. PubMed ID: 16668563 [TBL] [Abstract][Full Text] [Related]
11. Influence of ozone on ribonuclease activity in wheat (Triticum aestivum) leaves. Booker FL Physiol Plant; 2004 Feb; 120(2):249-255. PubMed ID: 15032859 [TBL] [Abstract][Full Text] [Related]
12. Lower heat shock factor activation and binding and faster rate of HSP-70A messenger RNA turnover in heat sensitive human leukemias. Mivechi NF; Ouyang H; Hahn GM Cancer Res; 1992 Dec; 52(24):6815-22. PubMed ID: 1458470 [TBL] [Abstract][Full Text] [Related]
13. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes. Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264 [TBL] [Abstract][Full Text] [Related]
14. Action of the Style Product of the Self-Incompatibility Gene of Nicotiana alata (S-RNase) on in Vitro-Grown Pollen Tubes. Gray JE; McClure BA; Bonig I; Anderson MA; Clarke AE Plant Cell; 1991 Mar; 3(3):271-283. PubMed ID: 12324597 [TBL] [Abstract][Full Text] [Related]
15. A role for glyceraldehyde-3-phosphate dehydrogenase in the development of thermotolerance in Xenopus laevis embryos. Nickells RW; Browder LW J Cell Biol; 1988 Nov; 107(5):1901-9. PubMed ID: 3182940 [TBL] [Abstract][Full Text] [Related]
16. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Hu XJ; Chen D; Lynne Mclntyre C; Fernanda Dreccer M; Zhang ZB; Drenth J; Kalaipandian S; Chang H; Xue GP Plant Cell Environ; 2018 Jan; 41(1):79-98. PubMed ID: 28370204 [TBL] [Abstract][Full Text] [Related]
17. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos. Lang L; Miskovic D; Fernando P; Heikkila JJ Dev Genet; 1999; 25(4):365-74. PubMed ID: 10570468 [TBL] [Abstract][Full Text] [Related]
18. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. Matsumoto R; Akama K; Rakwal R; Iwahashi H BMC Genomics; 2005 Oct; 6():141. PubMed ID: 16209719 [TBL] [Abstract][Full Text] [Related]
19. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Panchuk II; Volkov RA; Schöffl F Plant Physiol; 2002 Jun; 129(2):838-53. PubMed ID: 12068123 [TBL] [Abstract][Full Text] [Related]
20. Varying patterns of protein synthesis in bread wheat during heat shock. Efeoglu B; Terzioglu S Acta Biol Hung; 2007 Mar; 58(1):93-104. PubMed ID: 17385547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]