These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12224309)

  • 1. [The advance of research for biocompatibility of medical polyurethanes].
    Li J; Xie X; He C; Fan C; Zhong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):315-9. PubMed ID: 12224309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane.
    Zhuang Y; Zhang Q; Feng J; Wang N; Xu W; Yang H
    Proc Inst Mech Eng H; 2017 Apr; 231(4):337-346. PubMed ID: 28332447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid.
    Li J; Zhang Y; Yang J; Tan H; Li J; Fu Q
    J Biomed Mater Res A; 2013 May; 101(5):1362-72. PubMed ID: 23077090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials.
    Santerre JP; Woodhouse K; Laroche G; Labow RS
    Biomaterials; 2005 Dec; 26(35):7457-70. PubMed ID: 16024077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro biocompatibility of PTMO-based polyurethanes and those containing PDMS blocks.
    Hsu SH; Tseng HJ
    J Biomater Appl; 2004 Oct; 19(2):135-46. PubMed ID: 15381786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exudation of additives to the surface of medical devices: impact on biocompatibility in the case of polyurethane used in implantable catheters.
    Nouman M; Jubeli E; Saunier J; Yagoubi N
    J Biomed Mater Res A; 2016 Dec; 104(12):2954-2967. PubMed ID: 27448986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of surface-modifying macromolecules to enhance the biostability of segmented polyurethanes.
    Tang YW; Santerre JP; Labow RS; Taylor DG
    J Biomed Mater Res; 1997 Jun; 35(3):371-81. PubMed ID: 9138071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property.
    Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders.
    Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO
    Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Assessment of the mechanical properties and biocompatibility of a new electrospun polyurethane vascular prosthesis].
    He W; Hu ZJ; Xu AW; Yin HH; Wang JS; Ye JL; Wang SM
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Dec; 31(12):2006-11. PubMed ID: 22200701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.
    Solanki A; Mehta J; Thakore S
    Carbohydr Polym; 2014 Sep; 110():338-44. PubMed ID: 24906764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsically radiopaque polyurethanes with chain extender 4,4'-isopropylidenebis [2-(2,6-diiodophenoxy)ethanol] for biomedical applications.
    Dawlee S; Jayabalan M
    J Biomater Appl; 2015 May; 29(10):1329-42. PubMed ID: 25542732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood compatible phospholipid-containing polyurethanes: synthesis characterization and blood compatibility evaluation.
    Li YJ; Nakaya T; Zhang Z; Kodama M
    J Biomater Appl; 1997 Oct; 12(2):167-91. PubMed ID: 9399140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of crosslinked blends of Pellethene and multiblock polyurethanes containing phospholipid.
    Yoo HJ; Kim HD
    Biomaterials; 2005 Jun; 26(16):2877-86. PubMed ID: 15603783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polyurethanes: synthesis and applications in regenerative medicine.
    Guelcher SA
    Tissue Eng Part B Rev; 2008 Mar; 14(1):3-17. PubMed ID: 18454631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibility.
    Pereira IH; Ayres E; Patrício PS; Góes AM; Gomide VS; Junior EP; Oréfice RL
    Acta Biomater; 2010 Aug; 6(8):3056-66. PubMed ID: 20193783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications.
    Podsiadlo P; Qin M; Cuddihy M; Zhu J; Critchley K; Kheng E; Kaushik AK; Qi Y; Kim HS; Noh ST; Arruda EM; Waas AM; Kotov NA
    Langmuir; 2009 Dec; 25(24):14093-9. PubMed ID: 19824626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparin based polyurethanes: A state-of-the-art review.
    Zia F; Zia KM; Zuber M; Tabasum S; Rehman S
    Int J Biol Macromol; 2016 Mar; 84():101-11. PubMed ID: 26666430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.