These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12224778)

  • 1. 512-channel vertical-cavity surface-emitting laser based free-space optical link.
    Châteauneuf M; Kirk AG; Plant DV; Yamamoto T; Ahearn JD
    Appl Opt; 2002 Sep; 41(26):5552-61. PubMed ID: 12224778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses.
    Strzelecka EM; Louderback DA; Thibeault BJ; Thompson GB; Bertilsson K; Coldren LA
    Appl Opt; 1998 May; 37(14):2811-21. PubMed ID: 18273227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the optimum cluster parameters in a clustered free-space optical interconnect.
    Châteauneuf M; Kirk AG
    Appl Opt; 2003 Oct; 42(29):5906-17. PubMed ID: 14577544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays.
    Wang R; Rakić AD; Majewski ML
    Appl Opt; 2002 Jun; 41(17):3469-78. PubMed ID: 12074519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross talk and ghost talk in a microbeam free-space optical interconnect system with vertical-cavity surface-emitting lasers, microlenses, and metal-semiconductor-metal detectors.
    Zheng X; Marchand PJ; Huang D; Kibar O; Esener SC
    Appl Opt; 2000 Sep; 39(26):4834-41. PubMed ID: 18350076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a vertical-cavity surface-emitting laser-based bidirectional free-space optical interconnect.
    Zhou HJ; Morozov V; Neff J; Fedor A
    Appl Opt; 1997 Jun; 36(17):3835-53. PubMed ID: 18253411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D integrated heterogeneous intra-chip free-space optical interconnect.
    Ciftcioglu B; Berman R; Wang S; Hu J; Savidis I; Jain M; Moore D; Huang M; Friedman EG; Wicks G; Wu H
    Opt Express; 2012 Feb; 20(4):4331-45. PubMed ID: 22418191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and analysis of an adaptive board-to-board dynamic holographic interconnect.
    O'Brien DC; Faulkner GE; Wilkinson TD; Robertson B; Leyva DG
    Appl Opt; 2004 Jun; 43(16):3297-305. PubMed ID: 15181810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributed crossbar interconnects with vertical-cavity surface-emitting laser-angle multiplexing and fiber image guides.
    Li Y; Wang T; Kawai S
    Appl Opt; 1998 Jan; 37(2):254-63. PubMed ID: 18268581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Board-to-Board Free-Space Optical Interconnections Passing through Boards for a Bookshelf-Assembled Terabit-Per-Second-Class ATM Switch.
    Hirabayashi K; Yamamoto T; Matsuo S; Hino S
    Appl Opt; 1998 May; 37(14):2985-95. PubMed ID: 18273245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes.
    Tsai FC; O'Brien CJ; Petrović NS; Rakić AD
    Appl Opt; 2005 Oct; 44(30):6380-7. PubMed ID: 16252650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems.
    Kajita M; Kasahara K; Kim TJ; Neilson DT; Ogura I; Redmond I; Schenfeld E
    Appl Opt; 1998 Jun; 37(17):3746-55. PubMed ID: 18273346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package.
    Zheng X; Marchand PJ; Huang D; Kibar O; Ozkan NS; Esener SC
    Appl Opt; 1999 Sep; 38(26):5631-40. PubMed ID: 18324074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichip module with planar-integrated free-space optical vector-matrix-type interconnects.
    Gruber M
    Appl Opt; 2004 Jan; 43(2):463-70. PubMed ID: 14735965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Off-axis refractive mass-transported gallium-phosphide microlens array for the reduction of distortion in an optical interconnect system.
    Ballen TA; Leger JR
    Appl Opt; 2000 Nov; 39(32):6028-33. PubMed ID: 18354608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 40 Gb/s optical subassembly module for a multi-channel bidirectional optical link.
    Sangirov J; Joo GC; Choi JS; Kim DH; Yoo BS; Ukaegbu IA; Nga NT; Kim JH; Lee TW; Cho MH; Park HH
    Opt Express; 2014 Jan; 22(2):1768-83. PubMed ID: 24515184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interchip link system using an optical wiring method.
    Cho IK; Ryu JH; Jeong MY
    Opt Lett; 2008 Aug; 33(16):1881-3. PubMed ID: 18709120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of planar Fresnel microlenses with vertical-cavity surface-emitting laser arrays.
    Rastani K; Orenstein M; Kapon E; Von Lehmen AC
    Opt Lett; 1991 Jun; 16(12):919-21. PubMed ID: 19776829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides.
    Kim JT; Ju JJ; Park S; Kim MS; Park SK; Lee MH
    Opt Express; 2008 Aug; 16(17):13133-8. PubMed ID: 18711551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of hybrid microlens integration with vertical-cavity surface-emitting lasers for free-space optical links.
    Qi F; Bryan NK
    Opt Express; 2002 May; 10(9):413-8. PubMed ID: 19436375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.