These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12224936)

  • 41. [Nonribosomal peptides synthetases gene clusters and core domain in Pseudoalteromonas sp. NJ631].
    Chen W; Zhu P; He S; Jin H; Yan X
    Wei Sheng Wu Xue Bao; 2012 Dec; 52(12):1531-9. PubMed ID: 23457803
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biosynthesis of nonribosomal peptides1.
    Finking R; Marahiel MA
    Annu Rev Microbiol; 2004; 58():453-88. PubMed ID: 15487945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering.
    Nielsen ML; Isbrandt T; Petersen LM; Mortensen UH; Andersen MR; Hoof JB; Larsen TO
    PLoS One; 2016; 11(8):e0161199. PubMed ID: 27551732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity.
    Thirlway J; Lewis R; Nunns L; Al Nakeeb M; Styles M; Struck AW; Smith CP; Micklefield J
    Angew Chem Int Ed Engl; 2012 Jul; 51(29):7181-4. PubMed ID: 22711659
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE.
    Bruner SD; Weber T; Kohli RM; Schwarzer D; Marahiel MA; Walsh CT; Stubbs MT
    Structure; 2002 Mar; 10(3):301-10. PubMed ID: 12005429
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Refining and expanding nonribosomal peptide synthetase function and mechanism.
    McErlean M; Overbay J; Van Lanen S
    J Ind Microbiol Biotechnol; 2019 Mar; 46(3-4):493-513. PubMed ID: 30673909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex.
    Chiocchini C; Linne U; Stachelhaus T
    Chem Biol; 2006 Aug; 13(8):899-908. PubMed ID: 16931339
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide high-throughput mining of natural-product biosynthetic gene clusters by phage display.
    Yin J; Straight PD; Hrvatin S; Dorrestein PC; Bumpus SB; Jao C; Kelleher NL; Kolter R; Walsh CT
    Chem Biol; 2007 Mar; 14(3):303-12. PubMed ID: 17379145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioinformatics Tools for the Discovery of New Nonribosomal Peptides.
    Leclère V; Weber T; Jacques P; Pupin M
    Methods Mol Biol; 2016; 1401():209-32. PubMed ID: 26831711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemoproteomics profiling of surfactin-producing nonribosomal peptide synthetases in living bacterial cells.
    Ishikawa F; Konno S; Uchida C; Suzuki T; Takashima K; Dohmae N; Kakeya H; Tanabe G
    Cell Chem Biol; 2022 Jan; 29(1):145-156.e8. PubMed ID: 34133952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dipeptide formation on engineered hybrid peptide synthetases.
    Doekel S; Marahiel MA
    Chem Biol; 2000 Jun; 7(6):373-84. PubMed ID: 10873839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases.
    Kohli RM; Trauger JW; Schwarzer D; Marahiel MA; Walsh CT
    Biochemistry; 2001 Jun; 40(24):7099-108. PubMed ID: 11401555
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of sustainable chemistry to produce an acyl amino acid surfactant.
    Reznik GO; Vishwanath P; Pynn MA; Sitnik JM; Todd JJ; Wu J; Jiang Y; Keenan BG; Castle AB; Haskell RF; Smith TF; Somasundaran P; Jarrell KA
    Appl Microbiol Biotechnol; 2010 May; 86(5):1387-97. PubMed ID: 20094712
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-specific observation of acyl intermediate processing in thiotemplate biosynthesis by fourier transform mass spectrometry: the polyketide module of yersiniabactin synthetase.
    Mazur MT; Walsh CT; Kelleher NL
    Biochemistry; 2003 Nov; 42(46):13393-400. PubMed ID: 14621984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae.
    Miao V; Brost R; Chapple J; She K; Gal MF; Baltz RH
    J Ind Microbiol Biotechnol; 2006 Feb; 33(2):129-40. PubMed ID: 16208464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067.
    Jirakkakul J; Punya J; Pongpattanakitshote S; Paungmoung P; Vorapreeda N; Tachaleat A; Klomnara C; Tanticharoen M; Cheevadhanarak S
    Microbiology (Reading); 2008 Apr; 154(Pt 4):995-1006. PubMed ID: 18375793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases.
    Quadri LE; Weinreb PH; Lei M; Nakano MM; Zuber P; Walsh CT
    Biochemistry; 1998 Feb; 37(6):1585-95. PubMed ID: 9484229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines.
    Brown AS; Calcott MJ; Owen JG; Ackerley DF
    Nat Prod Rep; 2018 Nov; 35(11):1210-1228. PubMed ID: 30069573
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases.
    Stein DB; Linne U; Marahiel MA
    FEBS J; 2005 Sep; 272(17):4506-20. PubMed ID: 16128819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosynthetic systems for nonribosomal peptide antibiotic assembly.
    Mootz HD; Marahiel MA
    Curr Opin Chem Biol; 1997 Dec; 1(4):543-51. PubMed ID: 9667890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.