These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12225206)

  • 1. Formation of quasi-one-dimensional Cu2O structures by in situ oxidation of Cu(100).
    Zhou G; Yang JC
    Phys Rev Lett; 2002 Sep; 89(10):106101. PubMed ID: 12225206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Cu2O islands grown on a Cu(100) surface through vacuum annealing.
    Zhou G; Yang JC
    Phys Rev Lett; 2004 Nov; 93(22):226101. PubMed ID: 15601101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu2O island shape transition during Cu-Au alloy oxidation.
    Zhou GW; Wang L; Birtcher RC; Baldo PM; Pearson JE; Yang JC; Eastman JA
    Phys Rev Lett; 2006 Jun; 96(22):226108. PubMed ID: 16803330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Kinetics of Copper Oxidation Investigated by In Situ Ultra-high Vacuum Transmission Electron Microscopy.
    Yang JC; Bharadwaj MD; Zhou G; Tropia L
    Microsc Microanal; 2001 Nov; 7(6):486-493. PubMed ID: 12597793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ atomic-scale imaging of the metal/oxide interfacial transformation.
    Zou L; Li J; Zakharov D; Stach EA; Zhou G
    Nat Commun; 2017 Aug; 8(1):307. PubMed ID: 28824169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] nanocomposites: formation, characterization and catalytic performance in partial ethanol oxidation.
    Khanderi J; Contiu C; Engstler J; Hoffmann RC; Schneider JJ; Drochner A; Vogel H
    Nanoscale; 2011 Mar; 3(3):1102-12. PubMed ID: 21183989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Reconstruction and Oxide Nucleation Due to Oxygen Interaction with Cu(001) Observed by In Situ Ultra-High Vacuum Transmission Electron Microscopy.
    Yang JC; Yeadon M; Kolasa B; Gibson JM
    Microsc Microanal; 1998 May; 4(3):334-339. PubMed ID: 9767671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sintering and oxidation using a novel ultrahigh vacuum transmission electron microscope with in situ magnetron sputtering.
    Yeadon M; Yang JC; Averback RS; Gibson JM
    Microsc Res Tech; 1998 Aug; 42(4):302-8. PubMed ID: 9779835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Cu or Cu2O-polyimide nanocomposites using Cu powders and their optical properties.
    Choi DJ; Maeng JS; Ahn KO; Jung MJ; Song SH; Kim YH
    Nanotechnology; 2014 Sep; 25(37):375604. PubMed ID: 25148002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seed-mediated growth approach to shape-controlled synthesis of Cu2O particles.
    Wang D; Yu D; Mo M; Liu X; Qian Y
    J Colloid Interface Sci; 2003 May; 261(2):565-8. PubMed ID: 16256570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion-oxidation processes.
    Huang CC; Hwu JR; Su WC; Shieh DB; Tzeng Y; Yeh CS
    Chemistry; 2006 May; 12(14):3805-10. PubMed ID: 16528773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ ultra-high vacuum transmission electron microscopy studies of the transient oxidation stage of Cu and Cu alloy thin films.
    Yang JC; Zhou G
    Micron; 2012 Nov; 43(11):1195-210. PubMed ID: 22537718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.
    LaGrow AP; Ward MR; Lloyd DC; Gai PL; Boyes ED
    J Am Chem Soc; 2017 Jan; 139(1):179-185. PubMed ID: 27936677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells.
    Li C; Li Y; Delaunay JJ
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):480-6. PubMed ID: 24299015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale oxidation of Cu100: oxide morphology and surface reactivity.
    Lampimäki M; Lahtonen K; Hirsimäki M; Valden M
    J Chem Phys; 2007 Jan; 126(3):034703. PubMed ID: 17249892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic hindrance during the surface oxidation of Cu(100)-c(10x2)-Ag.
    Lahtonen K; Lampimäki M; Hirsimäki M; Valden M
    J Chem Phys; 2008 Nov; 129(19):194707. PubMed ID: 19026081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The temperature dependence of Cu2O formation on a Cu(110) surface with an energetic O2 molecular beam.
    Hashinokuchi M; Yoshigoe A; Teraoka Y; Okada M
    J Phys Condens Matter; 2012 Oct; 24(39):395007. PubMed ID: 22941928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Structure and Ferromagnetism Modulation in Cu/Cu2O Interface: Impact of Interfacial Cu Vacancy and Its Diffusion.
    Li HB; Wang W; Xie X; Cheng Y; Zhang Z; Dong H; Zheng R; Wang WH; Lu F; Liu H
    Sci Rep; 2015 Oct; 5():15191. PubMed ID: 26478505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the composition of hetero-epitaxial islands via morphological analysis: an analytical model matching GeSi/Si(001) data.
    Gatti R; Pezzoli F; Boioli F; Montalenti F; Miglio L
    J Phys Condens Matter; 2012 Mar; 24(10):104018. PubMed ID: 22353725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual layer-by-layer growth of epitaxial oxide islands during Cu oxidation.
    Li M; Curnan MT; Gresh-Sill MA; House SD; Saidi WA; Yang JC
    Nat Commun; 2021 May; 12(1):2781. PubMed ID: 33986274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.