BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 12225603)

  • 1. Clinical review: immunodepression in the surgical patient and increased susceptibility to infection.
    Angele MK; Faist E
    Crit Care; 2002 Aug; 6(4):298-305. PubMed ID: 12225603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surgical trauma and immunosuppression: pathophysiology and potential immunomodulatory approaches.
    Angele MK; Chaudry IH
    Langenbecks Arch Surg; 2005 Aug; 390(4):333-41. PubMed ID: 15995884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gender and sex hormones influence the response to trauma and sepsis: potential therapeutic approaches.
    Angele MK; Frantz MC; Chaudry IH
    Clinics (Sao Paulo); 2006 Oct; 61(5):479-88. PubMed ID: 17072448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed neutralization of interleukin 6 reduces organ injury, selectively suppresses inflammatory mediator, and partially normalizes immune dysfunction following trauma and hemorrhagic shock.
    Zhang Y; Zhang J; Korff S; Ayoob F; Vodovotz Y; Billiar TR
    Shock; 2014 Sep; 42(3):218-27. PubMed ID: 24978887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclooxygenase-2-mediated regulation of Kupffer cell interleukin-6 production following trauma-hemorrhage and subsequent sepsis.
    Knöferl MW; Diodato MD; Schwacha MG; Cioffi WG; Bland KI; Chaudry IH
    Shock; 2001 Dec; 16(6):479-83. PubMed ID: 11770048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gender and sex hormones on immune responses following shock.
    Angele MK; Schwacha MG; Ayala A; Chaudry IH
    Shock; 2000 Aug; 14(2):81-90. PubMed ID: 10947147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trauma-haemorrhage-induced alterations in thymic prolactin receptor expression: implications in immune dysfunction.
    Nickel EA; Schwacha MG; Schneider CP; Bland KI; Chaudry IH
    Cytokine; 2002 May; 18(3):127-32. PubMed ID: 12126648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow Cytometric Analysis of Hematopoietic Populations in Rat Bone Marrow. Impact of Trauma and Hemorrhagic Shock.
    Francis WR; Ireland RE; Spear AM; Jenner D; Watts SA; Kirkman E; Pallister I
    Cytometry A; 2019 Nov; 95(11):1167-1177. PubMed ID: 31595661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thirty-Eight-Negative Kinase 1 Is a Mediator of Acute Kidney Injury in Experimental and Clinical Traumatic Hemorrhagic Shock.
    Halbgebauer R; Karasu E; Braun CK; Palmer A; Braumüller S; Schultze A; Schäfer F; Bückle S; Eigner A; Wachter U; Radermacher P; Resuello RRG; Tuplano JV; Nilsson Ekdahl K; Nilsson B; Armacki M; Kleger A; Seufferlein T; Kalbitz M; Gebhard F; Lambris JD; van Griensven M; Huber-Lang M
    Front Immunol; 2020; 11():2081. PubMed ID: 32983160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL33-mediated ILC2 activation and neutrophil IL5 production in the lung response after severe trauma: A reverse translation study from a human cohort to a mouse trauma model.
    Xu J; Guardado J; Hoffman R; Xu H; Namas R; Vodovotz Y; Xu L; Ramadan M; Brown J; Turnquist HR; Billiar TR
    PLoS Med; 2017 Jul; 14(7):e1002365. PubMed ID: 28742815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunological consequences of trauma and shock.
    Catania RA; Chaudry IH
    Ann Acad Med Singap; 1999 Jan; 28(1):120-32. PubMed ID: 10374038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of toll-like receptor-4 in the development of multi-organ failure following traumatic haemorrhagic shock and resuscitation.
    McGhan LJ; Jaroszewski DE
    Injury; 2012 Feb; 43(2):129-36. PubMed ID: 21689818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling acute traumatic injury.
    Valparaiso AP; Vicente DA; Bograd BA; Elster EA; Davis TA
    J Surg Res; 2015 Mar; 194(1):220-32. PubMed ID: 25481528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of trauma, duration of hypotension, and resuscitation regimen on cellular immunity after hemorrhagic shock.
    Schmand JF; Ayala A; Chaudry IH
    Crit Care Med; 1994 Jul; 22(7):1076-83. PubMed ID: 8026194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (Review).
    Jarrar D; Chaudry IH; Wang P
    Int J Mol Med; 1999 Dec; 4(6):575-83. PubMed ID: 10567665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The immune response to surgery and trauma: Implications for treatment.
    Marik PE; Flemmer M
    J Trauma Acute Care Surg; 2012 Oct; 73(4):801-8. PubMed ID: 22976420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunosuppression following surgical and traumatic injury.
    Kimura F; Shimizu H; Yoshidome H; Ohtsuka M; Miyazaki M
    Surg Today; 2010 Sep; 40(9):793-808. PubMed ID: 20740341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of immunosuppression in males following trauma-hemorrhage. Critical role of testosterone.
    Wichmann MW; Zellweger R; DeMaso CM; Ayala A; Chaudry IH
    Arch Surg; 1996 Nov; 131(11):1186-91; discussion 1191-2. PubMed ID: 8911259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innate-Like Lymphocytes Are Immediate Participants in the Hyper-Acute Immune Response to Trauma and Hemorrhagic Shock.
    Manson J; Hoffman R; Chen S; Ramadan MH; Billiar TR
    Front Immunol; 2019; 10():1501. PubMed ID: 31354702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological levels of 5 alpha-dihydrotestosterone depress wound immune function and impair wound healing following trauma-hemorrhage.
    Nitsch SM; Wittmann F; Angele P; Wichmann MW; Hatz R; Hernandez-Richter T; Chaudry IH; Jauch KW; Angele MK
    Arch Surg; 2004 Feb; 139(2):157-63. PubMed ID: 14769573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.