These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 12225911)
81. An Overview of D7 Protein Structure and Physiological Roles in Blood-Feeding Nematocera. Alvarenga PH; Andersen JF Biology (Basel); 2022 Dec; 12(1):. PubMed ID: 36671732 [TBL] [Abstract][Full Text] [Related]
82. What do we know about the microbiome of Hodosi R; Kazimirova M; Soltys K Front Cell Infect Microbiol; 2022; 12():990889. PubMed ID: 36467722 [No Abstract] [Full Text] [Related]
83. Insights into the proteomic profile and gene expression of Lutzomyia longipalpis-derived Lulo cell line. Côrtes LMC; de Pita-Pereira D; Farani PSG; Pereira BAS; Dias-Lopes G; da Silva FS; Corrêa PR; Silva RMM; Côrte-Real S; Bello FJ; Mendonça-Lima L; Moreira ODC; Waghabi MC; Alves CR Mem Inst Oswaldo Cruz; 2020; 115():e200113. PubMed ID: 33111757 [TBL] [Abstract][Full Text] [Related]
84. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Štibrániová I; Bartíková P; Holíková V; Kazimírová M Front Physiol; 2019; 10():830. PubMed ID: 31333488 [TBL] [Abstract][Full Text] [Related]
85. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Manning JE; Cantaert T Vaccines (Basel); 2019 Jan; 7(1):. PubMed ID: 30669682 [TBL] [Abstract][Full Text] [Related]
86. A Deep Insight Into the Sialotranscriptome of the Chagas Disease Vector, Panstrongylus megistus (Hemiptera: Heteroptera). Ribeiro JM; Schwarz A; Francischetti IM J Med Entomol; 2015 May; 52(3):351-8. PubMed ID: 26334808 [TBL] [Abstract][Full Text] [Related]
87. Antihistamine response: a dynamically refined function at the host-tick interface. Valdés JJ Parasit Vectors; 2014 Oct; 7():491. PubMed ID: 25358914 [TBL] [Abstract][Full Text] [Related]
88. A deep insight into the sialotranscriptome of the mosquito, Psorophora albipes. Chagas AC; Calvo E; Rios-Velásquez CM; Pessoa FA; Medeiros JF; Ribeiro JM BMC Genomics; 2013 Dec; 14():875. PubMed ID: 24330624 [TBL] [Abstract][Full Text] [Related]
89. The predicted secretome and transmembranome of the poultry red mite Dermanyssus gallinae. Schicht S; Qi W; Poveda L; Strube C Parasit Vectors; 2013 Sep; 6(1):259. PubMed ID: 24020355 [TBL] [Abstract][Full Text] [Related]
90. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Kazimírová M; Štibrániová I Front Cell Infect Microbiol; 2013; 3():43. PubMed ID: 23971008 [TBL] [Abstract][Full Text] [Related]
91. Tick vaccines and the control of tick-borne pathogens. Merino O; Alberdi P; Pérez de la Lastra JM; de la Fuente J Front Cell Infect Microbiol; 2013; 3():30. PubMed ID: 23847771 [TBL] [Abstract][Full Text] [Related]
92. Functional genetic characterization of salivary gland development in Aedes aegypti. Nguyen C; Andrews E; Le C; Sun L; Annan Z; Clemons A; Severson DW; Duman-Scheel M Evodevo; 2013 Mar; 4(1):9. PubMed ID: 23497573 [TBL] [Abstract][Full Text] [Related]
93. Tick salivary secretion as a source of antihemostatics. Chmelar J; Calvo E; Pedra JH; Francischetti IM; Kotsyfakis M J Proteomics; 2012 Jul; 75(13):3842-54. PubMed ID: 22564820 [TBL] [Abstract][Full Text] [Related]
94. Expression of Heat Shock and Other Stress Response Proteins in Ticks and Cultured Tick Cells in Response to Anaplasma spp. Infection and Heat Shock. Villar M; Ayllón N; Busby AT; Galindo RC; Blouin EF; Kocan KM; Bonzón-Kulichenko E; Zivkovic Z; Almazán C; Torina A; Vázquez J; de la Fuente J Int J Proteomics; 2010; 2010():657261. PubMed ID: 22084679 [TBL] [Abstract][Full Text] [Related]
95. Sialome of a generalist lepidopteran herbivore: identification of transcripts and proteins from Helicoverpa armigera labial salivary glands. Celorio-Mancera Mde L; Courtiade J; Muck A; Heckel DG; Musser RO; Vogel H PLoS One; 2011; 6(10):e26676. PubMed ID: 22046331 [TBL] [Abstract][Full Text] [Related]
96. The function and three-dimensional structure of a thromboxane A2/cysteinyl leukotriene-binding protein from the saliva of a mosquito vector of the malaria parasite. Alvarenga PH; Francischetti IM; Calvo E; Sá-Nunes A; Ribeiro JM; Andersen JF PLoS Biol; 2010 Nov; 8(11):e1000547. PubMed ID: 21152418 [TBL] [Abstract][Full Text] [Related]
97. Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Villar M; Torina A; Nuñez Y; Zivkovic Z; Marina A; Alongi A; Scimeca S; La Barbera G; Caracappa S; Vázquez J; Fuente Jde L Proteome Sci; 2010 Aug; 8():43. PubMed ID: 20704695 [TBL] [Abstract][Full Text] [Related]
98. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. Poinsignon A; Cornelie S; Mestres-Simon M; Lanfrancotti A; Rossignol M; Boulanger D; Cisse B; Sokhna C; Arcà B; Simondon F; Remoue F PLoS One; 2008 Jun; 3(6):e2472. PubMed ID: 18575604 [TBL] [Abstract][Full Text] [Related]
99. Insight into the sialome of the castor bean tick, Ixodes ricinus. Chmelar J; Anderson JM; Mu J; Jochim RC; Valenzuela JG; Kopecký J BMC Genomics; 2008 May; 9():233. PubMed ID: 18489795 [TBL] [Abstract][Full Text] [Related]
100. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Mans BJ; Andersen JF; Francischetti IM; Valenzuela JG; Schwan TG; Pham VM; Garfield MK; Hammer CH; Ribeiro JM Insect Biochem Mol Biol; 2008 Jan; 38(1):42-58. PubMed ID: 18070664 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]